Darknet/YOLO v3.0-208-g0b6f60f-dirty
Object Detection Framework
 
Loading...
Searching...
No Matches
col2im_kernels.cu File Reference

Macros

#define CUDA_KERNEL_LOOP(i, n)
 

Functions

int CAFFE_GET_BLOCKS (const int N)
 
void col2im_gpu_ext (const float *data_col, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, float *data_im)
 
__global__ void col2im_gpu_kernel (const int n, const float *data_col, const int height, const int width, const int ksize, const int pad, const int stride, const int height_col, const int width_col, float *data_im)
 
__global__ void col2im_gpu_kernel_ext (const int n, const float *data_col, const int height, const int width, const int channels, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, const int height_col, const int width_col, float *data_im)
 
void col2im_ongpu (float *data_col, int channels, int height, int width, int ksize, int stride, int pad, float *data_im)
 

Variables

const int CAFFE_CUDA_NUM_THREADS = 512
 

Macro Definition Documentation

◆ CUDA_KERNEL_LOOP

#define CUDA_KERNEL_LOOP (   i,
 
)
Value:
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
i < (n); \
i += blockDim.x * gridDim.x)

Function Documentation

◆ CAFFE_GET_BLOCKS()

int CAFFE_GET_BLOCKS ( const int  N)
inline
Here is the caller graph for this function:

◆ col2im_gpu_ext()

void col2im_gpu_ext ( const float *  data_col,
const int  channels,
const int  height,
const int  width,
const int  kernel_h,
const int  kernel_w,
const int  pad_h,
const int  pad_w,
const int  stride_h,
const int  stride_w,
const int  dilation_h,
const int  dilation_w,
float *  data_im 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ col2im_gpu_kernel()

__global__ void col2im_gpu_kernel ( const int  n,
const float *  data_col,
const int  height,
const int  width,
const int  ksize,
const int  pad,
const int  stride,
const int  height_col,
const int  width_col,
float *  data_im 
)
Here is the caller graph for this function:

◆ col2im_gpu_kernel_ext()

__global__ void col2im_gpu_kernel_ext ( const int  n,
const float *  data_col,
const int  height,
const int  width,
const int  channels,
const int  kernel_h,
const int  kernel_w,
const int  pad_h,
const int  pad_w,
const int  stride_h,
const int  stride_w,
const int  dilation_h,
const int  dilation_w,
const int  height_col,
const int  width_col,
float *  data_im 
)
Here is the caller graph for this function:

◆ col2im_ongpu()

void col2im_ongpu ( float *  data_col,
int  channels,
int  height,
int  width,
int  ksize,
int  stride,
int  pad,
float *  data_im 
)
Here is the call graph for this function:

Variable Documentation

◆ CAFFE_CUDA_NUM_THREADS

const int CAFFE_CUDA_NUM_THREADS = 512