Include this file to get access to the new Darknet V3 C++ API. More...
Classes | |
struct | Darknet::Parm |
Structure returned by Darknet::parse_arguments(). More... | |
struct | Darknet::Prediction |
A much-simplified version of the old API structure DarknetDetection. More... | |
Namespaces | |
namespace | Darknet |
The namespace for the C++ Darknet API. | |
Typedefs | |
using | Darknet::Parms = std::vector< Parm > |
Structure returned by Darknet::parse_arguments(). | |
using | Darknet::Predictions = std::vector< Prediction > |
Each image or video frame may contain many predictions. | |
using | Darknet::Probabilities = std::map< int, float > |
The likelyhood of a specific object class having been predicted. | |
using | Darknet::Box = DarknetBox |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::Detection = DarknetDetection |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::Image = DarknetImage |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::MMats = std::map< int, cv::Mat > |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::MStr = std::map< std::string, std::string > |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::MStrInt = std::map< std::string, int > |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::NetworkPtr = DarknetNetworkPtr |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::SInt = std::set< int > |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::SStr = std::set< std::string > |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::VFloat = std::vector< float > |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::VInt = std::vector< int > |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::VScalars = std::vector< cv::Scalar > |
Convenient simple types used in the Darknet/YOLO C++ API. | |
using | Darknet::VStr = std::vector< std::string > |
Convenient simple types used in the Darknet/YOLO C++ API. | |
Enumerations | |
enum class | Darknet::EParmType { Darknet::kUnknown , Darknet::kCfgFilename , Darknet::kNamesFilename , Darknet::kWeightsFilename , Darknet::kDirectory , Darknet::kFilename , Darknet::kOther } |
When parsing command-line parameters, each parameter is assigned a "type". More... | |
Functions | |
SInt | Darknet::add_skipped_class (Darknet::NetworkPtr ptr, const int class_to_skip) |
Add the given class index to the set of classes that Darknet must ignore. | |
cv::Mat | Darknet::annotate (const Darknet::NetworkPtr ptr, const Predictions &predictions, cv::Mat mat) |
Annotate the given image using the predictions from Darknet::predict(). | |
SInt | Darknet::clear_skipped_classes (Darknet::NetworkPtr ptr) |
Clear the set of classes which Darknet must ignore. | |
MMats | Darknet::create_yolo_heatmaps (Darknet::NetworkPtr ptr, const float threshold=0.1f) |
Create several CV_32FC1 (array of 32-bit floats, single channel) cv::Mat objects representing heatmaps obtained from the internals of the YOLO layers in the network. | |
SInt | Darknet::del_skipped_class (Darknet::NetworkPtr ptr, const int class_to_include) |
Remove the given class index from the set of classes that Darknet must ignore. | |
bool | Darknet::find_neural_network_files (Darknet::Parms &parms) |
Given some hints in the parsed parameters, this function attempts to find the neural network files and converts the necessary parameter(s) to filenames. | |
void | Darknet::fix_out_of_bound_values (Darknet::NetworkPtr ptr, const bool toggle) |
Fix out-of-bound values returned by Darknet::predict() for objects near the edges of images. | |
std::string | Darknet::format_duration_string (std::chrono::high_resolution_clock::duration duration, const int decimals=3) |
Format the C++ duration as an easy-to-read text string, such as "3.432 milliseconds" or "4.250 hours" . | |
void | Darknet::free_neural_network (Darknet::NetworkPtr &ptr) |
Free the neural network pointer allocated in Darknet::load_neural_network(). | |
const Darknet::VScalars & | Darknet::get_class_colours (const Darknet::NetworkPtr ptr) |
Get access to the vector of colours assigned to each class when the .names file was loaded. | |
const Darknet::VStr & | Darknet::get_class_names (const Darknet::NetworkPtr ptr) |
Get access to the vector of names read from the .names file when the configuration was loaded. | |
std::filesystem::path | Darknet::get_config_filename (const Darknet::NetworkPtr ptr) |
Get the filename of the configuration file that was used to load this neural network. | |
std::filesystem::path | Darknet::get_config_filename (const Parms &parms) |
Get the filename of the configuration file from the provided parameters. | |
std::filesystem::path | Darknet::get_names_filename (const Darknet::NetworkPtr ptr) |
Get the filename of the names file that was used to load this neural network. | |
std::filesystem::path | Darknet::get_names_filename (const Parms &parms) |
Get the filename of the names file from the provided parameters. | |
std::filesystem::path | Darknet::get_weights_filename (const Darknet::NetworkPtr ptr) |
Get the filename of the weights file that was used to load this neural network. | |
std::filesystem::path | Darknet::get_weights_filename (const Parms &parms) |
Get the filename of the weights file from the provided parameters. | |
float | Darknet::iou (const cv::Rect &lhs, const cv::Rect &rhs) |
Calculate intersection-over-union given 2 OpenCV rectangles. | |
Darknet::NetworkPtr | Darknet::load_neural_network (const std::filesystem::path &cfg_filename, const std::filesystem::path &names_filename, const std::filesystem::path &weights_filename) |
Load a neural network (.cfg) and the corresponding weights file. | |
Darknet::NetworkPtr | Darknet::load_neural_network (Darknet::Parms &parms) |
Load a neural network. | |
void | Darknet::network_dimensions (Darknet::NetworkPtr &ptr, int &w, int &h, int &c) |
Get the network dimensions (width, height, channels). | |
std::ostream & | Darknet::operator<< (std::ostream &os, const Darknet::Prediction &pred) |
Display some information about this specific prediction. | |
std::ostream & | Darknet::operator<< (std::ostream &os, const Darknet::Predictions &preds) |
Display some information about all the predictions. | |
Darknet::Parms | Darknet::parse_arguments (const Darknet::VStr &v) |
Similar to the other Darknet::parse_arguments(), but uses a vector of strings as input. | |
Darknet::Parms | Darknet::parse_arguments (int argc, char *argv[]) |
Parse common Darknet command-line parameters with the values from argc and argv in main() . | |
Predictions | Darknet::predict (const Darknet::NetworkPtr ptr, const cv::Mat &mat) |
Get Darknet to look at the given image or video frame and return all predictions. | |
Predictions | Darknet::predict (const Darknet::NetworkPtr ptr, const std::filesystem::path &image_filename) |
Get Darknet to look at the given image and return all predictions. | |
Predictions | Darknet::predict (const Darknet::NetworkPtr ptr, Darknet::Image &img, cv::Size original_image_size=cv::Size(0, 0)) |
Get Darknet to look at the given image or video frame and return all predictions. | |
Predictions | Darknet::predict_and_annotate (const Darknet::NetworkPtr ptr, cv::Mat mat) |
Combination of Darknet::predict() and Darknet::annotate(). | |
cv::Mat | Darknet::resize_keeping_aspect_ratio (cv::Mat &mat, cv::Size desired_size, const cv::InterpolationFlags method=cv::InterpolationFlags::INTER_NEAREST) |
Resize the image as close as we can to the given size, but keep the aspect ratio the same as the original image. | |
void | Darknet::set_annotation_draw_bb (Darknet::NetworkPtr ptr, const bool toggle) |
Determines if bounding boxes are drawn when calling either Darknet::annotate() or Darknet::predict_and_annotate(). | |
void | Darknet::set_annotation_draw_label (Darknet::NetworkPtr ptr, const bool toggle) |
Determines if text labels are drawn above the bounding boxes when calling either Darknet::annotate() or Darknet::predict_and_annotate(). | |
void | Darknet::set_annotation_font (Darknet::NetworkPtr ptr, const cv::LineTypes line_type, const cv::HersheyFonts font_face, const int font_thickness, const double font_scale) |
Set the font characteristics to use when drawing the bounding boxes and labels in either Darknet::annotate() or Darknet::predict_and_annotate(). | |
void | Darknet::set_annotation_line_type (Darknet::NetworkPtr ptr, const cv::LineTypes line_type) |
The OpenCV line type can impact performance. | |
const Darknet::VScalars & | Darknet::set_class_colours (Darknet::NetworkPtr ptr, const Darknet::VScalars &colours) |
Set the colours to use when drawing annotations. | |
Darknet::Parms & | Darknet::set_default_neural_network (Darknet::Parms &parms, const std::string &hint1, const std::string &hint2="", const std::string &hint3="") |
If no neural network has been set in the parameters, this can be used to provide hints as to which files need to be loaded. | |
void | Darknet::set_detection_threshold (Darknet::NetworkPtr ptr, float threshold) |
Detection threshold to use when Darknet::predict() is called. | |
void | Darknet::set_gpu_index (int idx) |
Set the GPU index to use. | |
void | Darknet::set_non_maximal_suppression_threshold (Darknet::NetworkPtr ptr, float threshold) |
Non-maximal suppression threshold to use when Darknet::predict() is called. | |
void | Darknet::set_rounded_corner_bounding_boxes (Darknet::NetworkPtr ptr, const bool toggle, const float roundness) |
This determines if annotations are drawn as circles or rounded rectangles in either Darknet::annotate() or Darknet::predict_and_annotate(). | |
void | Darknet::set_trace (const bool flag) |
Set the Darknet::CfgAndState::is_trace flag. | |
void | Darknet::set_verbose (const bool flag) |
Set the Darknet::CfgAndState::is_verbose flag. | |
void | Darknet::show_version_info () |
Display a few lines of text with some version information. | |
SInt | Darknet::skipped_classes (const Darknet::NetworkPtr ptr) |
Return the set of classes which Darknet must ignore. | |
SInt | Darknet::skipped_classes (Darknet::NetworkPtr ptr, const SInt &classes_to_skip) |
Set the classes which Darknet must ignore, completely over-writing all previous values. | |
cv::Mat | Darknet::visualize_heatmap (const cv::Mat &heatmap, const cv::ColormapTypes colourmap=cv::ColormapTypes::COLORMAP_JET) |
Convert a heatmap created with Darknet::create_yolo_heatmaps() to an easy-to-view image. | |
Include this file to get access to the new Darknet V3 C++ API.