Darknet/YOLO v3.0-208-g0b6f60f-dirty
Object Detection Framework
 
Loading...
Searching...
No Matches
activation_kernels.cu File Reference

Functions

__global__ void activate_array_gelu_kernel (float *x, int n)
 
__global__ void activate_array_hard_mish_kernel (float *x, int n, float *activation_input, float *output_gpu)
 
void activate_array_hard_mish_ongpu (float *x, int n, float *activation_input_gpu, float *output_gpu)
 
__global__ void activate_array_hardtan_kernel (float *x, int n)
 
__global__ void activate_array_kernel (float *x, int n, ACTIVATION a)
 
__global__ void activate_array_leaky_kernel (float *x, int n)
 
__global__ void activate_array_logistic_kernel (float *x, int n)
 
__global__ void activate_array_mish_kernel (float *x, int n, float *activation_input, float *output_gpu)
 
void activate_array_mish_ongpu (float *x, int n, float *activation_input_gpu, float *output_gpu)
 
__global__ void activate_array_normalize_channels_kernel (float *x, int size, int batch, int channels, int wh_step, float *output_gpu)
 
void activate_array_normalize_channels_ongpu (float *x, int n, int batch, int channels, int wh_step, float *output_gpu)
 
__global__ void activate_array_normalize_channels_softmax_kernel (float *x, int size, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
 
void activate_array_normalize_channels_softmax_ongpu (float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
 
void activate_array_ongpu (float *x, int n, ACTIVATION a)
 
__global__ void activate_array_relu6_kernel (float *x, int n)
 
__global__ void activate_array_relu_kernel (float *x, int n)
 
__global__ void activate_array_selu_kernel (float *x, int n)
 
__global__ void activate_array_swish_kernel (float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
 
void activate_array_swish_ongpu (float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
 
__global__ void activate_array_tanh_kernel (float *x, int n)
 
__device__ float activate_kernel (float x, ACTIVATION a)
 
void binary_activate_array_gpu (float *x, int n, int size, BINARY_ACTIVATION a, float *y)
 
__global__ void binary_activate_array_kernel (float *x, int n, int s, BINARY_ACTIVATION a, float *y)
 
void binary_gradient_array_gpu (float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y)
 
__global__ void binary_gradient_array_kernel (float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx)
 
__device__ float elu_activate_kernel (float x)
 
__device__ float elu_gradient_kernel (float x)
 
__device__ float gelu_activate_kernel (float x)
 
__device__ float gelu_gradient_kernel (float x)
 
__global__ void gradient_array_gelu_kernel (float *x, int n, float *delta)
 
__global__ void gradient_array_hard_mish_kernel (int n, float *activation_input_gpu, float *delta)
 
void gradient_array_hard_mish_ongpu (int n, float *activation_input_gpu, float *delta)
 
__global__ void gradient_array_hardtan_kernel (float *x, int n, float *delta)
 
__global__ void gradient_array_kernel (float *x, int n, ACTIVATION a, float *delta)
 
__global__ void gradient_array_leaky_kernel (float *x, int n, float *delta)
 
__global__ void gradient_array_logistic_kernel (float *x, int n, float *delta)
 
__global__ void gradient_array_mish_kernel (int n, float *activation_input_gpu, float *delta)
 
void gradient_array_mish_ongpu (int n, float *activation_input_gpu, float *delta)
 
__global__ void gradient_array_normalize_channels_kernel (float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
 
void gradient_array_normalize_channels_ongpu (float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
 
__global__ void gradient_array_normalize_channels_softmax_kernel (float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
 
void gradient_array_normalize_channels_softmax_ongpu (float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
 
void gradient_array_ongpu (float *x, int n, ACTIVATION a, float *delta)
 
__global__ void gradient_array_relu6_kernel (float *x, int n, float *delta)
 
__global__ void gradient_array_relu_kernel (float *x, int n, float *delta)
 
__global__ void gradient_array_revleaky_kernel (float *x, int n, float *delta)
 
__global__ void gradient_array_selu_kernel (float *x, int n, float *delta)
 
__global__ void gradient_array_swish_kernel (float *x, int n, float *sigmoid_gpu, float *delta)
 
void gradient_array_swish_ongpu (float *x, int n, float *sigmoid_gpu, float *delta)
 
__global__ void gradient_array_tanh_kernel (float *x, int n, float *delta)
 
__device__ float gradient_kernel (float x, ACTIVATION a)
 
__device__ float hard_mish_yashas (float x)
 
__device__ float hard_mish_yashas_grad (float x)
 
__device__ float hardtan_activate_kernel (float x)
 
__device__ float hardtan_gradient_kernel (float x)
 
__device__ float leaky_activate_kernel (float x)
 
__device__ float leaky_gradient_kernel (float x)
 
__device__ float lhtan_activate_kernel (float x)
 
__device__ float lhtan_gradient_kernel (float x)
 
__device__ float linear_activate_kernel (float x)
 
__device__ float linear_gradient_kernel (float x)
 
__device__ float loggy_activate_kernel (float x)
 
__device__ float loggy_gradient_kernel (float x)
 
__device__ float logistic_activate_kernel (float x)
 
__device__ float logistic_gradient_kernel (float x)
 
__device__ float mish_njuffa (float x)
 
__device__ float mish_yashas (float x)
 
__device__ float mish_yashas2 (float x)
 
__device__ float plse_activate_kernel (float x)
 
__device__ float plse_gradient_kernel (float x)
 
__device__ float ramp_activate_kernel (float x)
 
__device__ float ramp_gradient_kernel (float x)
 
__device__ float relie_activate_kernel (float x)
 
__device__ float relie_gradient_kernel (float x)
 
__device__ float relu6_activate_kernel (float x)
 
__device__ float relu6_gradient_kernel (float x)
 
__device__ float relu_activate_kernel (float x)
 
__device__ float relu_gradient_kernel (float x)
 
__device__ float sech_gpu (float x)
 
__device__ float selu_activate_kernel (float x)
 
__device__ float selu_gradient_kernel (float x)
 
__device__ float softplus_kernel (float x, float threshold=20)
 
__device__ float stair_activate_kernel (float x)
 
__device__ float stair_gradient_kernel (float x)
 
__device__ float tanh_activate_kernel (float x)
 
__device__ float tanh_gradient_kernel (float x)
 

Function Documentation

◆ activate_array_gelu_kernel()

__global__ void activate_array_gelu_kernel ( float *  x,
int  n 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_hard_mish_kernel()

__global__ void activate_array_hard_mish_kernel ( float *  x,
int  n,
float *  activation_input,
float *  output_gpu 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_hard_mish_ongpu()

void activate_array_hard_mish_ongpu ( float *  x,
int  n,
float *  activation_input_gpu,
float *  output_gpu 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_hardtan_kernel()

__global__ void activate_array_hardtan_kernel ( float *  x,
int  n 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_kernel()

__global__ void activate_array_kernel ( float *  x,
int  n,
ACTIVATION  a 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_leaky_kernel()

__global__ void activate_array_leaky_kernel ( float *  x,
int  n 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_logistic_kernel()

__global__ void activate_array_logistic_kernel ( float *  x,
int  n 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_mish_kernel()

__global__ void activate_array_mish_kernel ( float *  x,
int  n,
float *  activation_input,
float *  output_gpu 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_mish_ongpu()

void activate_array_mish_ongpu ( float *  x,
int  n,
float *  activation_input_gpu,
float *  output_gpu 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_normalize_channels_kernel()

__global__ void activate_array_normalize_channels_kernel ( float *  x,
int  size,
int  batch,
int  channels,
int  wh_step,
float *  output_gpu 
)
Here is the caller graph for this function:

◆ activate_array_normalize_channels_ongpu()

void activate_array_normalize_channels_ongpu ( float *  x,
int  n,
int  batch,
int  channels,
int  wh_step,
float *  output_gpu 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_normalize_channels_softmax_kernel()

__global__ void activate_array_normalize_channels_softmax_kernel ( float *  x,
int  size,
int  batch,
int  channels,
int  wh_step,
float *  output_gpu,
int  use_max_val 
)
Here is the caller graph for this function:

◆ activate_array_normalize_channels_softmax_ongpu()

void activate_array_normalize_channels_softmax_ongpu ( float *  x,
int  n,
int  batch,
int  channels,
int  wh_step,
float *  output_gpu,
int  use_max_val 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_ongpu()

void activate_array_ongpu ( float *  x,
int  n,
ACTIVATION  a 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_relu6_kernel()

__global__ void activate_array_relu6_kernel ( float *  x,
int  n 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_relu_kernel()

__global__ void activate_array_relu_kernel ( float *  x,
int  n 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_selu_kernel()

__global__ void activate_array_selu_kernel ( float *  x,
int  n 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_swish_kernel()

__global__ void activate_array_swish_kernel ( float *  x,
int  n,
float *  output_sigmoid_gpu,
float *  output_gpu 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_swish_ongpu()

void activate_array_swish_ongpu ( float *  x,
int  n,
float *  output_sigmoid_gpu,
float *  output_gpu 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_array_tanh_kernel()

__global__ void activate_array_tanh_kernel ( float *  x,
int  n 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ activate_kernel()

__device__ float activate_kernel ( float  x,
ACTIVATION  a 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ binary_activate_array_gpu()

void binary_activate_array_gpu ( float *  x,
int  n,
int  size,
BINARY_ACTIVATION  a,
float *  y 
)
Here is the call graph for this function:

◆ binary_activate_array_kernel()

__global__ void binary_activate_array_kernel ( float *  x,
int  n,
int  s,
BINARY_ACTIVATION  a,
float *  y 
)
Here is the caller graph for this function:

◆ binary_gradient_array_gpu()

void binary_gradient_array_gpu ( float *  x,
float *  dx,
int  n,
int  size,
BINARY_ACTIVATION  a,
float *  y 
)
Here is the call graph for this function:

◆ binary_gradient_array_kernel()

__global__ void binary_gradient_array_kernel ( float *  x,
float *  dy,
int  n,
int  s,
BINARY_ACTIVATION  a,
float *  dx 
)
Here is the caller graph for this function:

◆ elu_activate_kernel()

__device__ float elu_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ elu_gradient_kernel()

__device__ float elu_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ gelu_activate_kernel()

__device__ float gelu_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ gelu_gradient_kernel()

__device__ float gelu_gradient_kernel ( float  x)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_gelu_kernel()

__global__ void gradient_array_gelu_kernel ( float *  x,
int  n,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_hard_mish_kernel()

__global__ void gradient_array_hard_mish_kernel ( int  n,
float *  activation_input_gpu,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_hard_mish_ongpu()

void gradient_array_hard_mish_ongpu ( int  n,
float *  activation_input_gpu,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_hardtan_kernel()

__global__ void gradient_array_hardtan_kernel ( float *  x,
int  n,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_kernel()

__global__ void gradient_array_kernel ( float *  x,
int  n,
ACTIVATION  a,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_leaky_kernel()

__global__ void gradient_array_leaky_kernel ( float *  x,
int  n,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_logistic_kernel()

__global__ void gradient_array_logistic_kernel ( float *  x,
int  n,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_mish_kernel()

__global__ void gradient_array_mish_kernel ( int  n,
float *  activation_input_gpu,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_mish_ongpu()

void gradient_array_mish_ongpu ( int  n,
float *  activation_input_gpu,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_normalize_channels_kernel()

__global__ void gradient_array_normalize_channels_kernel ( float *  x,
int  size,
int  batch,
int  channels,
int  wh_step,
float *  delta_gpu 
)
Here is the caller graph for this function:

◆ gradient_array_normalize_channels_ongpu()

void gradient_array_normalize_channels_ongpu ( float *  output_gpu,
int  n,
int  batch,
int  channels,
int  wh_step,
float *  delta_gpu 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_normalize_channels_softmax_kernel()

__global__ void gradient_array_normalize_channels_softmax_kernel ( float *  x,
int  size,
int  batch,
int  channels,
int  wh_step,
float *  delta_gpu 
)
Here is the caller graph for this function:

◆ gradient_array_normalize_channels_softmax_ongpu()

void gradient_array_normalize_channels_softmax_ongpu ( float *  output_gpu,
int  n,
int  batch,
int  channels,
int  wh_step,
float *  delta_gpu 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_ongpu()

void gradient_array_ongpu ( float *  x,
int  n,
ACTIVATION  a,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_relu6_kernel()

__global__ void gradient_array_relu6_kernel ( float *  x,
int  n,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_relu_kernel()

__global__ void gradient_array_relu_kernel ( float *  x,
int  n,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_revleaky_kernel()

__global__ void gradient_array_revleaky_kernel ( float *  x,
int  n,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_selu_kernel()

__global__ void gradient_array_selu_kernel ( float *  x,
int  n,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_swish_kernel()

__global__ void gradient_array_swish_kernel ( float *  x,
int  n,
float *  sigmoid_gpu,
float *  delta 
)
Here is the caller graph for this function:

◆ gradient_array_swish_ongpu()

void gradient_array_swish_ongpu ( float *  x,
int  n,
float *  sigmoid_gpu,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_array_tanh_kernel()

__global__ void gradient_array_tanh_kernel ( float *  x,
int  n,
float *  delta 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gradient_kernel()

__device__ float gradient_kernel ( float  x,
ACTIVATION  a 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ hard_mish_yashas()

__device__ float hard_mish_yashas ( float  x)
Here is the caller graph for this function:

◆ hard_mish_yashas_grad()

__device__ float hard_mish_yashas_grad ( float  x)
Here is the caller graph for this function:

◆ hardtan_activate_kernel()

__device__ float hardtan_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ hardtan_gradient_kernel()

__device__ float hardtan_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ leaky_activate_kernel()

__device__ float leaky_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ leaky_gradient_kernel()

__device__ float leaky_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ lhtan_activate_kernel()

__device__ float lhtan_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ lhtan_gradient_kernel()

__device__ float lhtan_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ linear_activate_kernel()

__device__ float linear_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ linear_gradient_kernel()

__device__ float linear_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ loggy_activate_kernel()

__device__ float loggy_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ loggy_gradient_kernel()

__device__ float loggy_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ logistic_activate_kernel()

__device__ float logistic_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ logistic_gradient_kernel()

__device__ float logistic_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ mish_njuffa()

__device__ float mish_njuffa ( float  x)

◆ mish_yashas()

__device__ float mish_yashas ( float  x)

◆ mish_yashas2()

__device__ float mish_yashas2 ( float  x)
Here is the caller graph for this function:

◆ plse_activate_kernel()

__device__ float plse_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ plse_gradient_kernel()

__device__ float plse_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ ramp_activate_kernel()

__device__ float ramp_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ ramp_gradient_kernel()

__device__ float ramp_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ relie_activate_kernel()

__device__ float relie_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ relie_gradient_kernel()

__device__ float relie_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ relu6_activate_kernel()

__device__ float relu6_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ relu6_gradient_kernel()

__device__ float relu6_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ relu_activate_kernel()

__device__ float relu_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ relu_gradient_kernel()

__device__ float relu_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ sech_gpu()

__device__ float sech_gpu ( float  x)
Here is the caller graph for this function:

◆ selu_activate_kernel()

__device__ float selu_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ selu_gradient_kernel()

__device__ float selu_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ softplus_kernel()

__device__ float softplus_kernel ( float  x,
float  threshold = 20 
)
Here is the caller graph for this function:

◆ stair_activate_kernel()

__device__ float stair_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ stair_gradient_kernel()

__device__ float stair_gradient_kernel ( float  x)
Here is the caller graph for this function:

◆ tanh_activate_kernel()

__device__ float tanh_activate_kernel ( float  x)
Here is the caller graph for this function:

◆ tanh_gradient_kernel()

__device__ float tanh_gradient_kernel ( float  x)
Here is the caller graph for this function: