Classes | |
struct | box_label |
struct | boxabs |
struct | contrastive_params |
struct | Darknet::Output_Object |
This is used to help keep some state between calls to functions fill_network_boxes(), get_yolo_detections(), etc. More... | |
struct | data |
struct | det_num_pair |
struct | dxrep |
struct | ious |
struct | load_args |
Used when a secondary thread is created to load things, such as images. More... | |
struct | matrix |
struct | update_args |
Namespaces | |
namespace | Darknet |
The namespace for the C++ Darknet API. | |
Macros | |
#define | DARKNET_INCLUDE_ORIGINAL_API |
If you're using some old software that expects the original C API in the Darknet library, then make sure you "#define DARKNET_INCLUDE_ORIGINAL_API" before you include darknet.h. | |
#define | SECRET_NUM -1234 |
Typedefs | |
typedef struct box_label | box_label |
typedef struct boxabs | boxabs |
typedef struct contrastive_params | contrastive_params |
typedef struct data | data |
typedef struct det_num_pair | det_num_pair |
typedef struct dxrep | dxrep |
typedef struct ious | ious |
typedef struct load_args | load_args |
Used when a secondary thread is created to load things, such as images. | |
typedef struct matrix | matrix |
using | Darknet::Output_Object_Cache = std::list< Output_Object > |
typedef struct det_num_pair * | pdet_num_pair |
typedef struct update_args | update_args |
using | Darknet::VThreads = std::vector< std::thread > |
Enumerations | |
enum | ACTIVATION { LOGISTIC , RELU , RELU6 , RELIE , LINEAR , RAMP , TANH , PLSE , REVLEAKY , LEAKY , ELU , LOGGY , STAIR , HARDTAN , LHTAN , SELU , GELU , SWISH , MISH , HARD_MISH , NORM_CHAN , NORM_CHAN_SOFTMAX , NORM_CHAN_SOFTMAX_MAXVAL } |
enum | BINARY_ACTIVATION { MULT , ADD , SUB , DIV } |
enum | COST_TYPE { SSE , MASKED , L1 , SEG , SMOOTH , WGAN } |
enum | data_type { DETECTION_DATA , IMAGE_DATA , LETTERBOX_DATA } |
Things that we can do on a secondary thread. More... | |
enum | IMTYPE { PNG , BMP , TGA , JPG } |
enum | IOU_LOSS { IOU , GIOU , MSE , DIOU , CIOU } |
enum | learning_rate_policy { CONSTANT , STEP , EXP , POLY , STEPS , SIG , RANDOM , SGDR } |
enum | UNUSED_ENUM_TYPE { UNUSED_DEF_VAL } |
enum | WEIGHTS_NORMALIZATION_T { NO_NORMALIZATION , RELU_NORMALIZATION , SOFTMAX_NORMALIZATION } |
enum | WEIGHTS_TYPE_T { NO_WEIGHTS , PER_FEATURE , PER_CHANNEL } |
enum | YOLO_POINT { YOLO_CENTER = 1 << 0 , YOLO_LEFT_TOP = 1 << 1 , YOLO_RIGHT_BOTTOM = 1 << 2 } |
Functions | |
void * | cuda_get_context () |
void | cuda_pull_array (float *x_gpu, float *x, size_t n) |
void | cuda_pull_array_async (float *x_gpu, float *x, size_t n) |
void | free_layer (Darknet::Layer &l) |
void | free_layer_custom (Darknet::Layer &l, int keep_cudnn_desc) |
int | get_yolo_detections_v3 (Darknet::Network *net, int w, int h, int netw, int neth, float thresh, int *map, int relative, Darknet::Detection *dets, int letter, Darknet::Output_Object_Cache &cache) |
Convert everything we've detected into bounding boxes and confidence scores for each class. | |
void | init_cpu () |
void | top_k (float *a, int n, int k, int *index) |
int | yolo_num_detections_v3 (Darknet::Network *net, const int index, const float thresh, Darknet::Output_Object_Cache &cache) |
Count the number of objects found in the current image. | |
#define DARKNET_INCLUDE_ORIGINAL_API |
If you're using some old software that expects the original C
API in the Darknet library, then make sure you "#define DARKNET_INCLUDE_ORIGINAL_API"
before you include darknet.h.
Internally, Darknet still uses the old C
V2 API which is why it is defined in darknet_internal.hpp.
#define SECRET_NUM -1234 |
typedef struct contrastive_params contrastive_params |
typedef struct det_num_pair det_num_pair |
Used when a secondary thread is created to load things, such as images.
typedef struct det_num_pair * pdet_num_pair |
typedef struct update_args update_args |
enum ACTIVATION |
enum BINARY_ACTIVATION |
enum COST_TYPE |
enum data_type |
Things that we can do on a secondary thread.
Enumerator | |
---|---|
DETECTION_DATA | |
IMAGE_DATA | causes Darknet::load_image() and Darknet::resize_image() to be called |
LETTERBOX_DATA | causes Darknet::load_image() and Darknet::letterbox_image() to be called |
enum IMTYPE |
enum IOU_LOSS |
enum learning_rate_policy |
enum UNUSED_ENUM_TYPE |
Enumerator | |
---|---|
UNUSED_DEF_VAL |
enum WEIGHTS_TYPE_T |
enum YOLO_POINT |
void * cuda_get_context | ( | ) |
void cuda_pull_array | ( | float * | x_gpu, |
float * | x, | ||
size_t | n | ||
) |
void cuda_pull_array_async | ( | float * | x_gpu, |
float * | x, | ||
size_t | n | ||
) |
void free_layer | ( | Darknet::Layer & | l | ) |
void free_layer_custom | ( | Darknet::Layer & | l, |
int | keep_cudnn_desc | ||
) |
int get_yolo_detections_v3 | ( | Darknet::Network * | net, |
int | w, | ||
int | h, | ||
int | netw, | ||
int | neth, | ||
float | thresh, | ||
int * | map, | ||
int | relative, | ||
Darknet::Detection * | dets, | ||
int | letter, | ||
Darknet::Output_Object_Cache & | cache | ||
) |
Convert everything we've detected into bounding boxes and confidence scores for each class.
void init_cpu | ( | ) |
void top_k | ( | float * | a, |
int | n, | ||
int | k, | ||
int * | index | ||
) |
int yolo_num_detections_v3 | ( | Darknet::Network * | net, |
const int | index, | ||
const float | thresh, | ||
Darknet::Output_Object_Cache & | cache | ||
) |
Count the number of objects found in the current image.
Only looks at the YOLO layer at index
within the network. Starting with V3 JAZZ, this will also populate (appends, does not clear!) the object cache with the location of all objects found so we don't have to look through the entire YOLO output again when creating the boxes.