Darknet/YOLO v3.0-177-gfa2353b
Object Detection Framework
 
Loading...
Searching...
No Matches
batchnorm_layer.cpp File Reference
Include dependency graph for batchnorm_layer.cpp:

Functions

void backward_batchnorm_layer (Darknet::Layer &l, Darknet::NetworkState state)
 
void backward_batchnorm_layer_gpu (Darknet::Layer &l, Darknet::NetworkState state)
 
void backward_scale_cpu (float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
 
void forward_batchnorm_layer (Darknet::Layer &l, Darknet::NetworkState state)
 
void forward_batchnorm_layer_gpu (Darknet::Layer &l, Darknet::NetworkState state)
 
void mean_delta_cpu (float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
 
void normalize_delta_cpu (float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
 
void pull_batchnorm_layer (Darknet::Layer &l)
 
void push_batchnorm_layer (Darknet::Layer &l)
 
void resize_batchnorm_layer (Darknet::Layer *l, int w, int h)
 
void update_batchnorm_layer (Darknet::Layer &l, int batch, float learning_rate, float momentum, float decay)
 
void update_batchnorm_layer_gpu (Darknet::Layer &l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale)
 
void variance_delta_cpu (float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
 

Function Documentation

◆ backward_batchnorm_layer()

void backward_batchnorm_layer ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ backward_batchnorm_layer_gpu()

void backward_batchnorm_layer_gpu ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ backward_scale_cpu()

void backward_scale_cpu ( float *  x_norm,
float *  delta,
int  batch,
int  n,
int  size,
float *  scale_updates 
)
Here is the caller graph for this function:

◆ forward_batchnorm_layer()

void forward_batchnorm_layer ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ forward_batchnorm_layer_gpu()

void forward_batchnorm_layer_gpu ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ mean_delta_cpu()

void mean_delta_cpu ( float *  delta,
float *  variance,
int  batch,
int  filters,
int  spatial,
float *  mean_delta 
)
Here is the caller graph for this function:

◆ normalize_delta_cpu()

void normalize_delta_cpu ( float *  x,
float *  mean,
float *  variance,
float *  mean_delta,
float *  variance_delta,
int  batch,
int  filters,
int  spatial,
float *  delta 
)
Here is the caller graph for this function:

◆ pull_batchnorm_layer()

void pull_batchnorm_layer ( Darknet::Layer l)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ push_batchnorm_layer()

void push_batchnorm_layer ( Darknet::Layer l)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ resize_batchnorm_layer()

void resize_batchnorm_layer ( Darknet::Layer l,
int  w,
int  h 
)
Here is the call graph for this function:

◆ update_batchnorm_layer()

void update_batchnorm_layer ( Darknet::Layer l,
int  batch,
float  learning_rate,
float  momentum,
float  decay 
)
Here is the call graph for this function:

◆ update_batchnorm_layer_gpu()

void update_batchnorm_layer_gpu ( Darknet::Layer l,
int  batch,
float  learning_rate_init,
float  momentum,
float  decay,
float  loss_scale 
)
Here is the call graph for this function:

◆ variance_delta_cpu()

void variance_delta_cpu ( float *  x,
float *  delta,
float *  mean,
float *  variance,
int  batch,
int  filters,
int  spatial,
float *  variance_delta 
)
Here is the caller graph for this function: