Darknet/YOLO v3.0-177-gfa2353b
Object Detection Framework
 
Loading...
Searching...
No Matches
Darknet::Layer Struct Referencefinal

#include "darknet_layers.hpp"

Public Attributes

float * a_avg_gpu
 
int absolute
 
ACTIVATION activation
 
float * activation_input
 
float * activation_input_gpu
 
int adam
 
char * align_bit_weights
 
char * align_bit_weights_gpu
 
int align_bit_weights_size
 
float * align_workspace_gpu
 
int align_workspace_size
 
float alpha
 
float angle
 
int antialiasing
 
int assisted_excitation
 
int avgpool
 
float B1
 
float B2
 
int background
 
void(* backward )(Layer &l, Darknet::NetworkState network_state)
 
void(* backward_gpu )(Layer &l, Darknet::NetworkState network_state)
 
int batch
 
int batch_normalize
 
cudnnConvolutionBwdDataAlgo_t bd_algo
 
cudnnConvolutionBwdDataAlgo_t bd_algo16
 
float beta
 
float beta_nms
 
cudnnConvolutionBwdFilterAlgo_t bf_algo
 
cudnnConvolutionBwdFilterAlgo_t bf_algo16
 
float bflops
 
float * bias_change_gpu
 
float * bias_m
 
float * bias_m_gpu
 
int bias_match
 
float * bias_updates
 
float * bias_updates_gpu
 
float * bias_v
 
float * bias_v_gpu
 
float * biases
 
float * biases_ema
 
float * biases_gpu
 
float * bin_conv_shortcut_in_gpu
 
float * bin_conv_shortcut_out_gpu
 
uint32_t * bin_re_packed_input
 
int binary
 
float * binary_input
 
float * binary_input_gpu
 
float * binary_weights
 
float * binary_weights_gpu
 
int bit_align
 
float * bottelneck_delta_gpu
 
float * bottelneck_hi_gpu
 
int bottleneck
 
int burnin_update
 
int c
 
float * c_cpu
 
float * c_gpu
 
float * cell_cpu
 
float * cell_gpu
 
int * class_ids
 
float class_scale
 
int classes
 
float * classes_multipliers
 
int classfix
 
float clip
 
float cls_normalizer
 
float * col_image
 
float * col_image_gpu
 
float * combine_cpu
 
float * combine_delta_cpu
 
float * combine_delta_gpu
 
float * combine_gpu
 
float * concat
 
float * concat_delta
 
float * concat_delta_gpu
 
float * concat_gpu
 
contrastive_paramscontrast_p_gpu
 
int contrastive_neg_max
 
cudnnConvolutionDescriptor_t convDesc
 
float coord_scale
 
int coordconv
 
int coords
 
float * cos_sim
 
float * cos_sim_gpu
 
float * cost
 
COST_TYPE cost_type
 
int * counts
 
char * cweights
 
float * dc_cpu
 
float * dc_gpu
 
cudnnTensorDescriptor_t ddstTensorDesc
 
cudnnTensorDescriptor_t ddstTensorDesc16
 
int deform
 
float * delta
 
float * delta_gpu
 
float delta_normalizer
 
int delta_pinned
 
int detection
 
int dets_for_show
 
int dets_for_track
 
float * dh_cpu
 
float * dh_gpu
 
int dilation
 
int does_cost
 
int dont_update
 
int dontload
 
int dontloadscales
 
int dontsave
 
float dot
 
float * drop_blocks_scale
 
float * drop_blocks_scale_gpu
 
int dropblock
 
int dropblock_size_abs
 
float dropblock_size_rel
 
cudnnTensorDescriptor_t dsrcTensorDesc
 
cudnnTensorDescriptor_t dsrcTensorDesc16
 
cudnnTensorDescriptor_t dstTensorDesc
 
cudnnTensorDescriptor_t dstTensorDesc16
 
cudnnFilterDescriptor_t dweightDesc
 
cudnnFilterDescriptor_t dweightDesc16
 
int dynamic_minibatch
 
int embedding_layer_id
 
float * embedding_output
 
int embedding_size
 
float eps
 
float * exp_cos_sim
 
float exposure
 
int extra
 
float * f_cpu
 
float * f_gpu
 
int flatten
 
int flip
 
int flipped
 
int focal_loss
 
float focus
 
int forced
 
float * forgot_delta
 
float * forgot_delta_gpu
 
float * forgot_state
 
float * forgot_state_gpu
 
void(* forward )(Layer &l, Darknet::NetworkState network_state)
 
void(* forward_gpu )(Layer &l, Darknet::NetworkState network_state)
 
cudnnConvolutionFwdAlgo_t fw_algo
 
cudnnConvolutionFwdAlgo_t fw_algo16
 
float * g_cpu
 
float * g_gpu
 
float * gate_delta_gpu
 
float * gate_gpu
 
int grad_centr
 
int group_id
 
int groups
 
float * gt_gpu
 
int h
 
float * h_cpu
 
float * h_gpu
 
float * hh_cpu
 
float * hh_gpu
 
int hidden
 
int history_size
 
float * i_cpu
 
float * i_gpu
 
float ignore_thresh
 
int index
 
int * indexes
 
int * indexes_gpu
 
float * input_antialiasing_gpu
 
Layerinput_gate_layer
 
Layerinput_h_layer
 
Layerinput_layer
 
int * input_layers
 
Layerinput_r_layer
 
Layerinput_save_layer
 
int * input_sizes
 
int * input_sizes_gpu
 
Layerinput_state_layer
 
Layerinput_z_layer
 
int inputs
 
IOU_LOSS iou_loss
 
float iou_normalizer
 
float iou_thresh
 
IOU_LOSS iou_thresh_kind
 
float jitter
 
int joint
 
float kappa
 
int keep_delta_gpu
 
float label_smooth_eps
 
int * labels
 
float * last_prev_cell_gpu
 
float * last_prev_state_gpu
 
float ** layers_delta
 
float ** layers_delta_gpu
 
float ** layers_output
 
float ** layers_output_gpu
 
int lda_align
 
float learning_rate_scale
 
int log
 
float * loss
 
float * loss_gpu
 
ACTIVATION lstm_activation
 
float * m
 
float * m_cbn_avg_gpu
 
float * m_gpu
 
int * map
 
int * mask
 
float mask_scale
 
int max_boxes
 
float max_delta
 
int maxpool_depth
 
int maxpool_zero_nonmax
 
float * mean
 
float mean_alpha
 
float * mean_arr
 
float * mean_arr_gpu
 
float * mean_delta
 
float * mean_delta_gpu
 
float * mean_gpu
 
int n
 
int nbiases
 unused? Seems to be no references to this in the codebase.
 
int new_coords
 
int new_lda
 
NMS_KIND nms_kind
 
int noadjust
 
int noloss
 
float noobject_scale
 
cudnnTensorDescriptor_t normDstTensorDesc
 
cudnnTensorDescriptor_t normDstTensorDescF16
 
float * norms
 
float * norms_gpu
 
cudnnTensorDescriptor_t normTensorDesc
 
int numload
 
int nweights
 
float * o_cpu
 
float * o_gpu
 
float obj_normalizer
 
float object_scale
 
int objectness
 
int objectness_smooth
 
int onlyforward
 
int optimized_memory
 
int out_c
 
int out_channels
 
int out_h
 
int out_w
 
float * output
 
float * output_avg_gpu
 
float * output_gpu
 
Layeroutput_layer
 
int output_pinned
 
int outputs
 
float * p_constrastive
 
int pad
 
int peephole
 
cudnnPoolingDescriptor_t poolingDesc
 
float * prev_cell_cpu
 
float * prev_cell_gpu
 
float * prev_state
 
float * prev_state_cpu
 
float * prev_state_gpu
 
float probability
 
float * r_cpu
 
float * r_gpu
 
float * rand
 
float * rand_gpu
 
float random
 
float ratio
 
int receptive_h
 
int receptive_h_scale
 
int receptive_w
 
int receptive_w_scale
 
int reorg
 
int rescore
 
Layerreset_layer
 
float resize
 
float reverse
 
float * rolling_mean
 
float * rolling_mean_gpu
 
float * rolling_variance
 
float * rolling_variance_gpu
 
int rotate
 
float saturation
 
float * save_delta_gpu
 
float * save_gpu
 
float scale
 
float * scale_change_gpu
 
float * scale_m
 
float * scale_m_gpu
 
float * scale_updates
 
float * scale_updates_gpu
 
float * scale_v
 
float * scale_v_gpu
 
int scale_wh
 
float scale_x_y
 
float * scales
 
float * scales_ema
 
float * scales_gpu
 
Layerself_layer
 
Layershare_layer
 
float shift
 
int shortcut
 
int show_details
 
int side
 
float sim_thresh
 
int size
 
float smooth
 
int softmax
 
Darknet::Treesoftmax_tree
 
int spatial
 
float * spatial_mean
 
int sqrt
 
float * squared
 
float * squared_gpu
 
cudnnTensorDescriptor_t srcTensorDesc
 
cudnnTensorDescriptor_t srcTensorDesc16
 
float * state
 
int state_constrain
 
float * state_delta
 
float * state_delta_gpu
 
Layerstate_gate_layer
 
float * state_gpu
 
Layerstate_h_layer
 
Layerstate_layer
 
Layerstate_r_layer
 
Layerstate_save_layer
 
Layerstate_state_layer
 
Layerstate_z_layer
 
int steps
 
int stopbackward
 
float * stored_c_cpu
 
float * stored_c_gpu
 
float * stored_h_cpu
 
float * stored_h_gpu
 
int stream
 
int stretch
 
int stretch_sway
 
int stride
 
int stride_x
 
int stride_y
 
float ** sums
 
int sway
 
int t
 
char * t_bit_input
 
int tanh
 
float * temp2_cpu
 
float * temp2_gpu
 
float * temp3_cpu
 
float * temp3_gpu
 
float * temp_cpu
 
float * temp_gpu
 
float temperature
 
float thresh
 
float time_normalizer
 
int total
 
float track_ciou_norm
 
int track_history_size
 
int train
 
int train_only_bn
 
float * transposed_align_workspace_gpu
 
int truth
 
int truth_size
 
float truth_thresh
 
int truths
 
Darknet::ELayerType type
 
float uc_normalizer
 
Layeruf
 
Layerug
 
Layeruh
 
Layerui
 
Layeruo
 
void(* update )(Layer &l, int, float, float, float)
 
void(* update_gpu )(Layer &l, int, float, float, float, float)
 
Layerupdate_layer
 
Layerur
 
int use_bin_output
 
Layeruz
 
float * v
 
float * v_cbn_avg_gpu
 
float * v_gpu
 
float * variance
 
float * variance_delta
 
float * variance_delta_gpu
 
float * variance_gpu
 
Layervf
 
Layervi
 
Layervo
 
int w
 
int wait_stream_id
 
float * weight_change_gpu
 
float * weight_deform_gpu
 
float * weight_updates
 
float * weight_updates_gpu
 
float * weight_updates_gpu16
 
cudnnFilterDescriptor_t weightDesc
 
cudnnFilterDescriptor_t weightDesc16
 
float * weights
 
float * weights_ema
 
float * weights_gpu
 
float * weights_gpu16
 
WEIGHTS_NORMALIZATION_T weights_normalization
 
WEIGHTS_TYPE_T weights_type
 
Layerwf
 
Layerwg
 
Layerwh
 
Layerwi
 
Layerwo
 
size_t workspace_size
 
Layerwr
 
Layerwz
 
float * x
 
float * x_gpu
 
float * x_norm
 
float * x_norm_gpu
 
int xnor
 
YOLO_POINT yolo_point
 
float * z_cpu
 
float * z_gpu
 

Member Data Documentation

◆ a_avg_gpu

float* Darknet::Layer::a_avg_gpu

◆ absolute

int Darknet::Layer::absolute

◆ activation

ACTIVATION Darknet::Layer::activation

◆ activation_input

float* Darknet::Layer::activation_input

◆ activation_input_gpu

float* Darknet::Layer::activation_input_gpu

◆ adam

int Darknet::Layer::adam

◆ align_bit_weights

char* Darknet::Layer::align_bit_weights

◆ align_bit_weights_gpu

char* Darknet::Layer::align_bit_weights_gpu

◆ align_bit_weights_size

int Darknet::Layer::align_bit_weights_size

◆ align_workspace_gpu

float* Darknet::Layer::align_workspace_gpu

◆ align_workspace_size

int Darknet::Layer::align_workspace_size

◆ alpha

float Darknet::Layer::alpha

◆ angle

float Darknet::Layer::angle

◆ antialiasing

int Darknet::Layer::antialiasing

◆ assisted_excitation

int Darknet::Layer::assisted_excitation

◆ avgpool

int Darknet::Layer::avgpool

◆ B1

float Darknet::Layer::B1

◆ B2

float Darknet::Layer::B2

◆ background

int Darknet::Layer::background

◆ backward

void(* Darknet::Layer::backward) (Layer &l, Darknet::NetworkState network_state)

◆ backward_gpu

void(* Darknet::Layer::backward_gpu) (Layer &l, Darknet::NetworkState network_state)

◆ batch

int Darknet::Layer::batch

◆ batch_normalize

int Darknet::Layer::batch_normalize

◆ bd_algo

cudnnConvolutionBwdDataAlgo_t Darknet::Layer::bd_algo

◆ bd_algo16

cudnnConvolutionBwdDataAlgo_t Darknet::Layer::bd_algo16

◆ beta

float Darknet::Layer::beta

◆ beta_nms

float Darknet::Layer::beta_nms

◆ bf_algo

cudnnConvolutionBwdFilterAlgo_t Darknet::Layer::bf_algo

◆ bf_algo16

cudnnConvolutionBwdFilterAlgo_t Darknet::Layer::bf_algo16

◆ bflops

float Darknet::Layer::bflops

◆ bias_change_gpu

float* Darknet::Layer::bias_change_gpu

◆ bias_m

float* Darknet::Layer::bias_m

◆ bias_m_gpu

float* Darknet::Layer::bias_m_gpu

◆ bias_match

int Darknet::Layer::bias_match

◆ bias_updates

float* Darknet::Layer::bias_updates

◆ bias_updates_gpu

float* Darknet::Layer::bias_updates_gpu

◆ bias_v

float* Darknet::Layer::bias_v

◆ bias_v_gpu

float* Darknet::Layer::bias_v_gpu

◆ biases

float* Darknet::Layer::biases

◆ biases_ema

float* Darknet::Layer::biases_ema

◆ biases_gpu

float* Darknet::Layer::biases_gpu

◆ bin_conv_shortcut_in_gpu

float* Darknet::Layer::bin_conv_shortcut_in_gpu

◆ bin_conv_shortcut_out_gpu

float* Darknet::Layer::bin_conv_shortcut_out_gpu

◆ bin_re_packed_input

uint32_t* Darknet::Layer::bin_re_packed_input

◆ binary

int Darknet::Layer::binary

◆ binary_input

float* Darknet::Layer::binary_input

◆ binary_input_gpu

float* Darknet::Layer::binary_input_gpu

◆ binary_weights

float* Darknet::Layer::binary_weights

◆ binary_weights_gpu

float* Darknet::Layer::binary_weights_gpu

◆ bit_align

int Darknet::Layer::bit_align

◆ bottelneck_delta_gpu

float* Darknet::Layer::bottelneck_delta_gpu

◆ bottelneck_hi_gpu

float* Darknet::Layer::bottelneck_hi_gpu

◆ bottleneck

int Darknet::Layer::bottleneck

◆ burnin_update

int Darknet::Layer::burnin_update

◆ c

int Darknet::Layer::c

◆ c_cpu

float* Darknet::Layer::c_cpu

◆ c_gpu

float* Darknet::Layer::c_gpu

◆ cell_cpu

float* Darknet::Layer::cell_cpu

◆ cell_gpu

float* Darknet::Layer::cell_gpu

◆ class_ids

int* Darknet::Layer::class_ids

◆ class_scale

float Darknet::Layer::class_scale

◆ classes

int Darknet::Layer::classes

◆ classes_multipliers

float* Darknet::Layer::classes_multipliers

◆ classfix

int Darknet::Layer::classfix

◆ clip

float Darknet::Layer::clip

◆ cls_normalizer

float Darknet::Layer::cls_normalizer

◆ col_image

float* Darknet::Layer::col_image

◆ col_image_gpu

float* Darknet::Layer::col_image_gpu

◆ combine_cpu

float* Darknet::Layer::combine_cpu

◆ combine_delta_cpu

float* Darknet::Layer::combine_delta_cpu

◆ combine_delta_gpu

float* Darknet::Layer::combine_delta_gpu

◆ combine_gpu

float* Darknet::Layer::combine_gpu

◆ concat

float* Darknet::Layer::concat

◆ concat_delta

float* Darknet::Layer::concat_delta

◆ concat_delta_gpu

float* Darknet::Layer::concat_delta_gpu

◆ concat_gpu

float* Darknet::Layer::concat_gpu

◆ contrast_p_gpu

contrastive_params* Darknet::Layer::contrast_p_gpu

◆ contrastive_neg_max

int Darknet::Layer::contrastive_neg_max

◆ convDesc

cudnnConvolutionDescriptor_t Darknet::Layer::convDesc

◆ coord_scale

float Darknet::Layer::coord_scale

◆ coordconv

int Darknet::Layer::coordconv

◆ coords

int Darknet::Layer::coords

◆ cos_sim

float* Darknet::Layer::cos_sim

◆ cos_sim_gpu

float* Darknet::Layer::cos_sim_gpu

◆ cost

float* Darknet::Layer::cost

◆ cost_type

COST_TYPE Darknet::Layer::cost_type

◆ counts

int* Darknet::Layer::counts

◆ cweights

char* Darknet::Layer::cweights

◆ dc_cpu

float* Darknet::Layer::dc_cpu

◆ dc_gpu

float* Darknet::Layer::dc_gpu

◆ ddstTensorDesc

cudnnTensorDescriptor_t Darknet::Layer::ddstTensorDesc

◆ ddstTensorDesc16

cudnnTensorDescriptor_t Darknet::Layer::ddstTensorDesc16

◆ deform

int Darknet::Layer::deform

◆ delta

float* Darknet::Layer::delta

◆ delta_gpu

float* Darknet::Layer::delta_gpu

◆ delta_normalizer

float Darknet::Layer::delta_normalizer

◆ delta_pinned

int Darknet::Layer::delta_pinned

◆ detection

int Darknet::Layer::detection

◆ dets_for_show

int Darknet::Layer::dets_for_show

◆ dets_for_track

int Darknet::Layer::dets_for_track

◆ dh_cpu

float* Darknet::Layer::dh_cpu

◆ dh_gpu

float* Darknet::Layer::dh_gpu

◆ dilation

int Darknet::Layer::dilation

◆ does_cost

int Darknet::Layer::does_cost

◆ dont_update

int Darknet::Layer::dont_update

◆ dontload

int Darknet::Layer::dontload

◆ dontloadscales

int Darknet::Layer::dontloadscales

◆ dontsave

int Darknet::Layer::dontsave

◆ dot

float Darknet::Layer::dot

◆ drop_blocks_scale

float* Darknet::Layer::drop_blocks_scale

◆ drop_blocks_scale_gpu

float* Darknet::Layer::drop_blocks_scale_gpu

◆ dropblock

int Darknet::Layer::dropblock

◆ dropblock_size_abs

int Darknet::Layer::dropblock_size_abs

◆ dropblock_size_rel

float Darknet::Layer::dropblock_size_rel

◆ dsrcTensorDesc

cudnnTensorDescriptor_t Darknet::Layer::dsrcTensorDesc

◆ dsrcTensorDesc16

cudnnTensorDescriptor_t Darknet::Layer::dsrcTensorDesc16

◆ dstTensorDesc

cudnnTensorDescriptor_t Darknet::Layer::dstTensorDesc

◆ dstTensorDesc16

cudnnTensorDescriptor_t Darknet::Layer::dstTensorDesc16

◆ dweightDesc

cudnnFilterDescriptor_t Darknet::Layer::dweightDesc

◆ dweightDesc16

cudnnFilterDescriptor_t Darknet::Layer::dweightDesc16

◆ dynamic_minibatch

int Darknet::Layer::dynamic_minibatch

◆ embedding_layer_id

int Darknet::Layer::embedding_layer_id

◆ embedding_output

float* Darknet::Layer::embedding_output

◆ embedding_size

int Darknet::Layer::embedding_size

◆ eps

float Darknet::Layer::eps

◆ exp_cos_sim

float* Darknet::Layer::exp_cos_sim

◆ exposure

float Darknet::Layer::exposure

◆ extra

int Darknet::Layer::extra

◆ f_cpu

float* Darknet::Layer::f_cpu

◆ f_gpu

float* Darknet::Layer::f_gpu

◆ flatten

int Darknet::Layer::flatten

◆ flip

int Darknet::Layer::flip

◆ flipped

int Darknet::Layer::flipped

◆ focal_loss

int Darknet::Layer::focal_loss

◆ focus

float Darknet::Layer::focus

◆ forced

int Darknet::Layer::forced

◆ forgot_delta

float* Darknet::Layer::forgot_delta

◆ forgot_delta_gpu

float* Darknet::Layer::forgot_delta_gpu

◆ forgot_state

float* Darknet::Layer::forgot_state

◆ forgot_state_gpu

float* Darknet::Layer::forgot_state_gpu

◆ forward

void(* Darknet::Layer::forward) (Layer &l, Darknet::NetworkState network_state)

◆ forward_gpu

void(* Darknet::Layer::forward_gpu) (Layer &l, Darknet::NetworkState network_state)

◆ fw_algo

cudnnConvolutionFwdAlgo_t Darknet::Layer::fw_algo

◆ fw_algo16

cudnnConvolutionFwdAlgo_t Darknet::Layer::fw_algo16

◆ g_cpu

float* Darknet::Layer::g_cpu

◆ g_gpu

float* Darknet::Layer::g_gpu

◆ gate_delta_gpu

float* Darknet::Layer::gate_delta_gpu

◆ gate_gpu

float* Darknet::Layer::gate_gpu

◆ grad_centr

int Darknet::Layer::grad_centr

◆ group_id

int Darknet::Layer::group_id

◆ groups

int Darknet::Layer::groups

◆ gt_gpu

float* Darknet::Layer::gt_gpu

◆ h

int Darknet::Layer::h

◆ h_cpu

float* Darknet::Layer::h_cpu

◆ h_gpu

float* Darknet::Layer::h_gpu

◆ hh_cpu

float* Darknet::Layer::hh_cpu

◆ hh_gpu

float* Darknet::Layer::hh_gpu

◆ hidden

int Darknet::Layer::hidden

◆ history_size

int Darknet::Layer::history_size

◆ i_cpu

float* Darknet::Layer::i_cpu

◆ i_gpu

float* Darknet::Layer::i_gpu

◆ ignore_thresh

float Darknet::Layer::ignore_thresh

◆ index

int Darknet::Layer::index

◆ indexes

int* Darknet::Layer::indexes

◆ indexes_gpu

int* Darknet::Layer::indexes_gpu

◆ input_antialiasing_gpu

float* Darknet::Layer::input_antialiasing_gpu

◆ input_gate_layer

Layer* Darknet::Layer::input_gate_layer

◆ input_h_layer

Layer* Darknet::Layer::input_h_layer

◆ input_layer

Layer* Darknet::Layer::input_layer

◆ input_layers

int* Darknet::Layer::input_layers

◆ input_r_layer

Layer* Darknet::Layer::input_r_layer

◆ input_save_layer

Layer* Darknet::Layer::input_save_layer

◆ input_sizes

int* Darknet::Layer::input_sizes

◆ input_sizes_gpu

int* Darknet::Layer::input_sizes_gpu

◆ input_state_layer

Layer* Darknet::Layer::input_state_layer

◆ input_z_layer

Layer* Darknet::Layer::input_z_layer

◆ inputs

int Darknet::Layer::inputs

◆ iou_loss

IOU_LOSS Darknet::Layer::iou_loss

◆ iou_normalizer

float Darknet::Layer::iou_normalizer

◆ iou_thresh

float Darknet::Layer::iou_thresh

◆ iou_thresh_kind

IOU_LOSS Darknet::Layer::iou_thresh_kind

◆ jitter

float Darknet::Layer::jitter

◆ joint

int Darknet::Layer::joint

◆ kappa

float Darknet::Layer::kappa

◆ keep_delta_gpu

int Darknet::Layer::keep_delta_gpu

◆ label_smooth_eps

float Darknet::Layer::label_smooth_eps

◆ labels

int* Darknet::Layer::labels

◆ last_prev_cell_gpu

float* Darknet::Layer::last_prev_cell_gpu

◆ last_prev_state_gpu

float* Darknet::Layer::last_prev_state_gpu

◆ layers_delta

float** Darknet::Layer::layers_delta

◆ layers_delta_gpu

float** Darknet::Layer::layers_delta_gpu

◆ layers_output

float** Darknet::Layer::layers_output

◆ layers_output_gpu

float** Darknet::Layer::layers_output_gpu

◆ lda_align

int Darknet::Layer::lda_align

◆ learning_rate_scale

float Darknet::Layer::learning_rate_scale

◆ log

int Darknet::Layer::log

◆ loss

float* Darknet::Layer::loss

◆ loss_gpu

float* Darknet::Layer::loss_gpu

◆ lstm_activation

ACTIVATION Darknet::Layer::lstm_activation

◆ m

float* Darknet::Layer::m

◆ m_cbn_avg_gpu

float* Darknet::Layer::m_cbn_avg_gpu

◆ m_gpu

float* Darknet::Layer::m_gpu

◆ map

int* Darknet::Layer::map

◆ mask

int* Darknet::Layer::mask

◆ mask_scale

float Darknet::Layer::mask_scale

◆ max_boxes

int Darknet::Layer::max_boxes

◆ max_delta

float Darknet::Layer::max_delta

◆ maxpool_depth

int Darknet::Layer::maxpool_depth

◆ maxpool_zero_nonmax

int Darknet::Layer::maxpool_zero_nonmax

◆ mean

float* Darknet::Layer::mean

◆ mean_alpha

float Darknet::Layer::mean_alpha

◆ mean_arr

float* Darknet::Layer::mean_arr

◆ mean_arr_gpu

float* Darknet::Layer::mean_arr_gpu

◆ mean_delta

float* Darknet::Layer::mean_delta

◆ mean_delta_gpu

float* Darknet::Layer::mean_delta_gpu

◆ mean_gpu

float* Darknet::Layer::mean_gpu

◆ n

int Darknet::Layer::n

◆ nbiases

int Darknet::Layer::nbiases

unused? Seems to be no references to this in the codebase.

◆ new_coords

int Darknet::Layer::new_coords

◆ new_lda

int Darknet::Layer::new_lda

◆ nms_kind

NMS_KIND Darknet::Layer::nms_kind

◆ noadjust

int Darknet::Layer::noadjust

◆ noloss

int Darknet::Layer::noloss

◆ noobject_scale

float Darknet::Layer::noobject_scale

◆ normDstTensorDesc

cudnnTensorDescriptor_t Darknet::Layer::normDstTensorDesc

◆ normDstTensorDescF16

cudnnTensorDescriptor_t Darknet::Layer::normDstTensorDescF16

◆ norms

float* Darknet::Layer::norms

◆ norms_gpu

float* Darknet::Layer::norms_gpu

◆ normTensorDesc

cudnnTensorDescriptor_t Darknet::Layer::normTensorDesc

◆ numload

int Darknet::Layer::numload

◆ nweights

int Darknet::Layer::nweights

◆ o_cpu

float* Darknet::Layer::o_cpu

◆ o_gpu

float* Darknet::Layer::o_gpu

◆ obj_normalizer

float Darknet::Layer::obj_normalizer

◆ object_scale

float Darknet::Layer::object_scale

◆ objectness

int Darknet::Layer::objectness

◆ objectness_smooth

int Darknet::Layer::objectness_smooth

◆ onlyforward

int Darknet::Layer::onlyforward

◆ optimized_memory

int Darknet::Layer::optimized_memory

◆ out_c

int Darknet::Layer::out_c

◆ out_channels

int Darknet::Layer::out_channels

◆ out_h

int Darknet::Layer::out_h

◆ out_w

int Darknet::Layer::out_w

◆ output

float* Darknet::Layer::output

◆ output_avg_gpu

float* Darknet::Layer::output_avg_gpu

◆ output_gpu

float* Darknet::Layer::output_gpu

◆ output_layer

Layer* Darknet::Layer::output_layer

◆ output_pinned

int Darknet::Layer::output_pinned

◆ outputs

int Darknet::Layer::outputs

◆ p_constrastive

float* Darknet::Layer::p_constrastive

◆ pad

int Darknet::Layer::pad

◆ peephole

int Darknet::Layer::peephole

◆ poolingDesc

cudnnPoolingDescriptor_t Darknet::Layer::poolingDesc

◆ prev_cell_cpu

float* Darknet::Layer::prev_cell_cpu

◆ prev_cell_gpu

float* Darknet::Layer::prev_cell_gpu

◆ prev_state

float* Darknet::Layer::prev_state

◆ prev_state_cpu

float* Darknet::Layer::prev_state_cpu

◆ prev_state_gpu

float* Darknet::Layer::prev_state_gpu

◆ probability

float Darknet::Layer::probability

◆ r_cpu

float* Darknet::Layer::r_cpu

◆ r_gpu

float* Darknet::Layer::r_gpu

◆ rand

float* Darknet::Layer::rand

◆ rand_gpu

float* Darknet::Layer::rand_gpu

◆ random

float Darknet::Layer::random

◆ ratio

float Darknet::Layer::ratio

◆ receptive_h

int Darknet::Layer::receptive_h

◆ receptive_h_scale

int Darknet::Layer::receptive_h_scale

◆ receptive_w

int Darknet::Layer::receptive_w

◆ receptive_w_scale

int Darknet::Layer::receptive_w_scale

◆ reorg

int Darknet::Layer::reorg

◆ rescore

int Darknet::Layer::rescore

◆ reset_layer

Layer* Darknet::Layer::reset_layer

◆ resize

float Darknet::Layer::resize

◆ reverse

float Darknet::Layer::reverse

◆ rolling_mean

float* Darknet::Layer::rolling_mean

◆ rolling_mean_gpu

float* Darknet::Layer::rolling_mean_gpu

◆ rolling_variance

float* Darknet::Layer::rolling_variance

◆ rolling_variance_gpu

float* Darknet::Layer::rolling_variance_gpu

◆ rotate

int Darknet::Layer::rotate

◆ saturation

float Darknet::Layer::saturation

◆ save_delta_gpu

float* Darknet::Layer::save_delta_gpu

◆ save_gpu

float* Darknet::Layer::save_gpu

◆ scale

float Darknet::Layer::scale

◆ scale_change_gpu

float* Darknet::Layer::scale_change_gpu

◆ scale_m

float* Darknet::Layer::scale_m

◆ scale_m_gpu

float* Darknet::Layer::scale_m_gpu

◆ scale_updates

float* Darknet::Layer::scale_updates

◆ scale_updates_gpu

float* Darknet::Layer::scale_updates_gpu

◆ scale_v

float* Darknet::Layer::scale_v

◆ scale_v_gpu

float* Darknet::Layer::scale_v_gpu

◆ scale_wh

int Darknet::Layer::scale_wh

◆ scale_x_y

float Darknet::Layer::scale_x_y

◆ scales

float* Darknet::Layer::scales

◆ scales_ema

float* Darknet::Layer::scales_ema

◆ scales_gpu

float* Darknet::Layer::scales_gpu

◆ self_layer

Layer* Darknet::Layer::self_layer

◆ share_layer

Layer* Darknet::Layer::share_layer

◆ shift

float Darknet::Layer::shift

◆ shortcut

int Darknet::Layer::shortcut

◆ show_details

int Darknet::Layer::show_details

◆ side

int Darknet::Layer::side

◆ sim_thresh

float Darknet::Layer::sim_thresh

◆ size

int Darknet::Layer::size

◆ smooth

float Darknet::Layer::smooth

◆ softmax

int Darknet::Layer::softmax

◆ softmax_tree

Darknet::Tree* Darknet::Layer::softmax_tree

◆ spatial

int Darknet::Layer::spatial

◆ spatial_mean

float* Darknet::Layer::spatial_mean

◆ sqrt

int Darknet::Layer::sqrt

◆ squared

float* Darknet::Layer::squared

◆ squared_gpu

float* Darknet::Layer::squared_gpu

◆ srcTensorDesc

cudnnTensorDescriptor_t Darknet::Layer::srcTensorDesc

◆ srcTensorDesc16

cudnnTensorDescriptor_t Darknet::Layer::srcTensorDesc16

◆ state

float* Darknet::Layer::state

◆ state_constrain

int Darknet::Layer::state_constrain

◆ state_delta

float* Darknet::Layer::state_delta

◆ state_delta_gpu

float* Darknet::Layer::state_delta_gpu

◆ state_gate_layer

Layer* Darknet::Layer::state_gate_layer

◆ state_gpu

float* Darknet::Layer::state_gpu

◆ state_h_layer

Layer* Darknet::Layer::state_h_layer

◆ state_layer

Layer* Darknet::Layer::state_layer

◆ state_r_layer

Layer* Darknet::Layer::state_r_layer

◆ state_save_layer

Layer* Darknet::Layer::state_save_layer

◆ state_state_layer

Layer* Darknet::Layer::state_state_layer

◆ state_z_layer

Layer* Darknet::Layer::state_z_layer

◆ steps

int Darknet::Layer::steps

◆ stopbackward

int Darknet::Layer::stopbackward

◆ stored_c_cpu

float* Darknet::Layer::stored_c_cpu

◆ stored_c_gpu

float* Darknet::Layer::stored_c_gpu

◆ stored_h_cpu

float* Darknet::Layer::stored_h_cpu

◆ stored_h_gpu

float* Darknet::Layer::stored_h_gpu

◆ stream

int Darknet::Layer::stream

◆ stretch

int Darknet::Layer::stretch

◆ stretch_sway

int Darknet::Layer::stretch_sway

◆ stride

int Darknet::Layer::stride

◆ stride_x

int Darknet::Layer::stride_x

◆ stride_y

int Darknet::Layer::stride_y

◆ sums

float** Darknet::Layer::sums

◆ sway

int Darknet::Layer::sway

◆ t

int Darknet::Layer::t

◆ t_bit_input

char* Darknet::Layer::t_bit_input

◆ tanh

int Darknet::Layer::tanh

◆ temp2_cpu

float* Darknet::Layer::temp2_cpu

◆ temp2_gpu

float* Darknet::Layer::temp2_gpu

◆ temp3_cpu

float* Darknet::Layer::temp3_cpu

◆ temp3_gpu

float* Darknet::Layer::temp3_gpu

◆ temp_cpu

float* Darknet::Layer::temp_cpu

◆ temp_gpu

float* Darknet::Layer::temp_gpu

◆ temperature

float Darknet::Layer::temperature

◆ thresh

float Darknet::Layer::thresh

◆ time_normalizer

float Darknet::Layer::time_normalizer

◆ total

int Darknet::Layer::total

◆ track_ciou_norm

float Darknet::Layer::track_ciou_norm

◆ track_history_size

int Darknet::Layer::track_history_size

◆ train

int Darknet::Layer::train

◆ train_only_bn

int Darknet::Layer::train_only_bn

◆ transposed_align_workspace_gpu

float* Darknet::Layer::transposed_align_workspace_gpu

◆ truth

int Darknet::Layer::truth

◆ truth_size

int Darknet::Layer::truth_size

◆ truth_thresh

float Darknet::Layer::truth_thresh

◆ truths

int Darknet::Layer::truths

◆ type

Darknet::ELayerType Darknet::Layer::type

◆ uc_normalizer

float Darknet::Layer::uc_normalizer

◆ uf

Layer* Darknet::Layer::uf

◆ ug

Layer* Darknet::Layer::ug

◆ uh

Layer* Darknet::Layer::uh

◆ ui

Layer* Darknet::Layer::ui

◆ uo

Layer* Darknet::Layer::uo

◆ update

void(* Darknet::Layer::update) (Layer &l, int, float, float, float)

◆ update_gpu

void(* Darknet::Layer::update_gpu) (Layer &l, int, float, float, float, float)

◆ update_layer

Layer* Darknet::Layer::update_layer

◆ ur

Layer* Darknet::Layer::ur

◆ use_bin_output

int Darknet::Layer::use_bin_output

◆ uz

Layer* Darknet::Layer::uz

◆ v

float* Darknet::Layer::v

◆ v_cbn_avg_gpu

float* Darknet::Layer::v_cbn_avg_gpu

◆ v_gpu

float* Darknet::Layer::v_gpu

◆ variance

float* Darknet::Layer::variance

◆ variance_delta

float* Darknet::Layer::variance_delta

◆ variance_delta_gpu

float* Darknet::Layer::variance_delta_gpu

◆ variance_gpu

float* Darknet::Layer::variance_gpu

◆ vf

Layer* Darknet::Layer::vf

◆ vi

Layer* Darknet::Layer::vi

◆ vo

Layer* Darknet::Layer::vo

◆ w

int Darknet::Layer::w

◆ wait_stream_id

int Darknet::Layer::wait_stream_id

◆ weight_change_gpu

float* Darknet::Layer::weight_change_gpu

◆ weight_deform_gpu

float* Darknet::Layer::weight_deform_gpu

◆ weight_updates

float* Darknet::Layer::weight_updates

◆ weight_updates_gpu

float* Darknet::Layer::weight_updates_gpu

◆ weight_updates_gpu16

float* Darknet::Layer::weight_updates_gpu16

◆ weightDesc

cudnnFilterDescriptor_t Darknet::Layer::weightDesc

◆ weightDesc16

cudnnFilterDescriptor_t Darknet::Layer::weightDesc16

◆ weights

float* Darknet::Layer::weights

◆ weights_ema

float* Darknet::Layer::weights_ema

◆ weights_gpu

float* Darknet::Layer::weights_gpu

◆ weights_gpu16

float* Darknet::Layer::weights_gpu16

◆ weights_normalization

WEIGHTS_NORMALIZATION_T Darknet::Layer::weights_normalization

◆ weights_type

WEIGHTS_TYPE_T Darknet::Layer::weights_type

◆ wf

Layer* Darknet::Layer::wf

◆ wg

Layer* Darknet::Layer::wg

◆ wh

Layer* Darknet::Layer::wh

◆ wi

Layer* Darknet::Layer::wi

◆ wo

Layer* Darknet::Layer::wo

◆ workspace_size

size_t Darknet::Layer::workspace_size

◆ wr

Layer* Darknet::Layer::wr

◆ wz

Layer* Darknet::Layer::wz

◆ x

float* Darknet::Layer::x

◆ x_gpu

float* Darknet::Layer::x_gpu

◆ x_norm

float* Darknet::Layer::x_norm

◆ x_norm_gpu

float* Darknet::Layer::x_norm_gpu

◆ xnor

int Darknet::Layer::xnor

◆ yolo_point

YOLO_POINT Darknet::Layer::yolo_point

◆ z_cpu

float* Darknet::Layer::z_cpu

◆ z_gpu

float* Darknet::Layer::z_gpu

The documentation for this struct was generated from the following file: