#include "darknet_layers.hpp"
|
float * | a_avg_gpu |
|
int | absolute |
|
ACTIVATION | activation |
|
float * | activation_input |
|
float * | activation_input_gpu |
|
int | adam |
|
char * | align_bit_weights |
|
char * | align_bit_weights_gpu |
|
int | align_bit_weights_size |
|
float * | align_workspace_gpu |
|
int | align_workspace_size |
|
float | alpha |
|
float | angle |
|
int | antialiasing |
|
int | assisted_excitation |
|
int | avgpool |
|
float | B1 |
|
float | B2 |
|
int | background |
|
void(* | backward )(Layer &l, Darknet::NetworkState network_state) |
|
void(* | backward_gpu )(Layer &l, Darknet::NetworkState network_state) |
|
int | batch |
|
int | batch_normalize |
|
cudnnConvolutionBwdDataAlgo_t | bd_algo |
|
cudnnConvolutionBwdDataAlgo_t | bd_algo16 |
|
float | beta |
|
float | beta_nms |
|
cudnnConvolutionBwdFilterAlgo_t | bf_algo |
|
cudnnConvolutionBwdFilterAlgo_t | bf_algo16 |
|
float | bflops |
|
float * | bias_change_gpu |
|
float * | bias_m |
|
float * | bias_m_gpu |
|
int | bias_match |
|
float * | bias_updates |
|
float * | bias_updates_gpu |
|
float * | bias_v |
|
float * | bias_v_gpu |
|
float * | biases |
|
float * | biases_ema |
|
float * | biases_gpu |
|
float * | bin_conv_shortcut_in_gpu |
|
float * | bin_conv_shortcut_out_gpu |
|
uint32_t * | bin_re_packed_input |
|
int | binary |
|
float * | binary_input |
|
float * | binary_input_gpu |
|
float * | binary_weights |
|
float * | binary_weights_gpu |
|
int | bit_align |
|
float * | bottelneck_delta_gpu |
|
float * | bottelneck_hi_gpu |
|
int | bottleneck |
|
int | burnin_update |
|
int | c |
| channels
|
|
float * | c_cpu |
|
float * | c_gpu |
|
float * | cell_cpu |
|
float * | cell_gpu |
|
int * | class_ids |
|
float | class_scale |
|
int | classes |
|
float * | classes_multipliers |
|
int | classfix |
|
float | clip |
|
float | cls_normalizer |
|
float * | col_image |
|
float * | col_image_gpu |
|
float * | combine_cpu |
|
float * | combine_delta_cpu |
|
float * | combine_delta_gpu |
|
float * | combine_gpu |
|
float * | concat |
|
float * | concat_delta |
|
float * | concat_delta_gpu |
|
float * | concat_gpu |
|
contrastive_params * | contrast_p_gpu |
|
int | contrastive_neg_max |
|
cudnnConvolutionDescriptor_t | convDesc |
|
float | coord_scale |
|
int | coordconv |
|
int | coords |
|
float * | cos_sim |
|
float * | cos_sim_gpu |
|
float * | cost |
|
COST_TYPE | cost_type |
|
int * | counts |
|
char * | cweights |
|
float * | dc_cpu |
|
float * | dc_gpu |
|
cudnnTensorDescriptor_t | ddstTensorDesc |
|
cudnnTensorDescriptor_t | ddstTensorDesc16 |
|
int | deform |
|
float * | delta |
|
float * | delta_gpu |
|
float | delta_normalizer |
|
int | delta_pinned |
|
int | detection |
|
int | dets_for_show |
|
int | dets_for_track |
|
float * | dh_cpu |
|
float * | dh_gpu |
|
int | dilation |
|
int | does_cost |
|
int | dont_update |
|
int | dontload |
|
int | dontloadscales |
|
int | dontsave |
|
float | dot |
|
float * | drop_blocks_scale |
|
float * | drop_blocks_scale_gpu |
|
int | dropblock |
|
int | dropblock_size_abs |
|
float | dropblock_size_rel |
|
cudnnTensorDescriptor_t | dsrcTensorDesc |
|
cudnnTensorDescriptor_t | dsrcTensorDesc16 |
|
cudnnTensorDescriptor_t | dstTensorDesc |
|
cudnnTensorDescriptor_t | dstTensorDesc16 |
|
cudnnFilterDescriptor_t | dweightDesc |
|
cudnnFilterDescriptor_t | dweightDesc16 |
|
int | dynamic_minibatch |
|
int | embedding_layer_id |
|
float * | embedding_output |
|
int | embedding_size |
|
float | eps |
|
float * | exp_cos_sim |
|
float | exposure |
|
int | extra |
|
float * | f_cpu |
|
float * | f_gpu |
|
int | flatten |
|
int | flip |
|
int | flipped |
|
int | focal_loss |
|
float | focus |
|
int | forced |
|
float * | forgot_delta |
|
float * | forgot_delta_gpu |
|
float * | forgot_state |
|
float * | forgot_state_gpu |
|
void(* | forward )(Layer &l, Darknet::NetworkState network_state) |
|
void(* | forward_gpu )(Layer &l, Darknet::NetworkState network_state) |
|
cudnnConvolutionFwdAlgo_t | fw_algo |
|
cudnnConvolutionFwdAlgo_t | fw_algo16 |
|
float * | g_cpu |
|
float * | g_gpu |
|
float * | gate_delta_gpu |
|
float * | gate_gpu |
|
int | grad_centr |
|
int | group_id |
|
int | groups |
|
float * | gt_gpu |
|
int | h |
| height
|
|
float * | h_cpu |
|
float * | h_gpu |
|
float * | hh_cpu |
|
float * | hh_gpu |
|
int | hidden |
|
int | history_size |
|
float * | i_cpu |
|
float * | i_gpu |
|
float | ignore_thresh |
|
int | index |
|
int * | indexes |
|
int * | indexes_gpu |
|
float * | input_antialiasing_gpu |
|
Layer * | input_gate_layer |
|
Layer * | input_h_layer |
|
Layer * | input_layer |
|
int * | input_layers |
|
Layer * | input_r_layer |
|
Layer * | input_save_layer |
|
int * | input_sizes |
|
int * | input_sizes_gpu |
|
Layer * | input_state_layer |
|
Layer * | input_z_layer |
|
int | inputs |
|
IOU_LOSS | iou_loss |
|
float | iou_normalizer |
|
float | iou_thresh |
|
IOU_LOSS | iou_thresh_kind |
|
float | jitter |
|
int | joint |
|
float | kappa |
|
int | keep_delta_gpu |
|
float | label_smooth_eps |
|
int * | labels |
|
float * | last_prev_cell_gpu |
|
float * | last_prev_state_gpu |
|
float ** | layers_delta |
|
float ** | layers_delta_gpu |
|
float ** | layers_output |
|
float ** | layers_output_gpu |
|
int | lda_align |
|
float | learning_rate_scale |
|
int | log |
|
float * | loss |
|
float * | loss_gpu |
|
ACTIVATION | lstm_activation |
|
float * | m |
|
float * | m_cbn_avg_gpu |
|
float * | m_gpu |
|
int * | map |
|
int * | mask |
|
float | mask_scale |
|
int | max_boxes |
|
float | max_delta |
|
int | maxpool_depth |
|
int | maxpool_zero_nonmax |
|
float * | mean |
|
float | mean_alpha |
|
float * | mean_arr |
|
float * | mean_arr_gpu |
|
float * | mean_delta |
|
float * | mean_delta_gpu |
|
float * | mean_gpu |
|
int | n |
| number of anchors, masks (?); for example, with YOLOv4-tiny this is set to 3
|
|
int | nbiases |
| unused? Seems to be no references to this in the codebase.
|
|
int | new_coords |
|
int | new_lda |
|
NMS_KIND | nms_kind |
|
int | noadjust |
|
int | noloss |
|
float | noobject_scale |
|
cudnnTensorDescriptor_t | normDstTensorDesc |
|
cudnnTensorDescriptor_t | normDstTensorDescF16 |
|
float * | norms |
|
float * | norms_gpu |
|
cudnnTensorDescriptor_t | normTensorDesc |
|
int | numload |
|
int | nweights |
|
float * | o_cpu |
|
float * | o_gpu |
|
float | obj_normalizer |
|
float | object_scale |
|
int | objectness |
|
int | objectness_smooth |
|
int | onlyforward |
|
int | optimized_memory |
|
int | out_c |
|
int | out_channels |
|
int | out_h |
|
int | out_w |
|
float * | output |
|
float * | output_avg_gpu |
|
float * | output_gpu |
|
Layer * | output_layer |
|
int | output_pinned |
|
int | outputs |
|
float * | p_constrastive |
|
int | pad |
|
int | peephole |
|
cudnnPoolingDescriptor_t | poolingDesc |
|
float * | prev_cell_cpu |
|
float * | prev_cell_gpu |
|
float * | prev_state |
|
float * | prev_state_cpu |
|
float * | prev_state_gpu |
|
float | probability |
|
float * | r_cpu |
|
float * | r_gpu |
|
float * | rand |
|
float * | rand_gpu |
|
float | random |
|
float | ratio |
|
int | receptive_h |
|
int | receptive_h_scale |
|
int | receptive_w |
|
int | receptive_w_scale |
|
int | reorg |
|
int | rescore |
|
Layer * | reset_layer |
|
float | resize |
|
float | reverse |
|
float * | rolling_mean |
|
float * | rolling_mean_gpu |
|
float * | rolling_variance |
|
float * | rolling_variance_gpu |
|
int | rotate |
|
float | saturation |
|
float * | save_delta_gpu |
|
float * | save_gpu |
|
float | scale |
|
float * | scale_change_gpu |
|
float * | scale_m |
|
float * | scale_m_gpu |
|
float * | scale_updates |
|
float * | scale_updates_gpu |
|
float * | scale_v |
|
float * | scale_v_gpu |
|
int | scale_wh |
|
float | scale_x_y |
|
float * | scales |
|
float * | scales_ema |
|
float * | scales_gpu |
|
Layer * | self_layer |
|
Layer * | share_layer |
|
float | shift |
|
int | shortcut |
|
int | show_details |
|
int | side |
|
float | sim_thresh |
|
int | size |
|
float | smooth |
|
int | softmax |
|
Darknet::Tree * | softmax_tree |
|
int | spatial |
|
float * | spatial_mean |
|
int | sqrt |
|
float * | squared |
|
float * | squared_gpu |
|
cudnnTensorDescriptor_t | srcTensorDesc |
|
cudnnTensorDescriptor_t | srcTensorDesc16 |
|
float * | state |
|
int | state_constrain |
|
float * | state_delta |
|
float * | state_delta_gpu |
|
Layer * | state_gate_layer |
|
float * | state_gpu |
|
Layer * | state_h_layer |
|
Layer * | state_layer |
|
Layer * | state_r_layer |
|
Layer * | state_save_layer |
|
Layer * | state_state_layer |
|
Layer * | state_z_layer |
|
int | steps |
|
int | stopbackward |
|
float * | stored_c_cpu |
|
float * | stored_c_gpu |
|
float * | stored_h_cpu |
|
float * | stored_h_gpu |
|
int | stream |
|
int | stretch |
|
int | stretch_sway |
|
int | stride |
|
int | stride_x |
|
int | stride_y |
|
float ** | sums |
|
int | sway |
|
int | t |
|
char * | t_bit_input |
|
int | tanh |
|
float * | temp2_cpu |
|
float * | temp2_gpu |
|
float * | temp3_cpu |
|
float * | temp3_gpu |
|
float * | temp_cpu |
|
float * | temp_gpu |
|
float | temperature |
|
float | thresh |
|
float | time_normalizer |
|
int | total |
|
float | track_ciou_norm |
|
int | track_history_size |
|
int | train |
|
int | train_only_bn |
|
float * | transposed_align_workspace_gpu |
|
int | truth |
|
int | truth_size |
|
float | truth_thresh |
|
int | truths |
|
Darknet::ELayerType | type |
|
float | uc_normalizer |
|
Layer * | uf |
|
Layer * | ug |
|
Layer * | uh |
|
Layer * | ui |
|
Layer * | uo |
|
void(* | update )(Layer &l, int, float, float, float) |
|
void(* | update_gpu )(Layer &l, int, float, float, float, float) |
|
Layer * | update_layer |
|
Layer * | ur |
|
int | use_bin_output |
|
Layer * | uz |
|
float * | v |
|
float * | v_cbn_avg_gpu |
|
float * | v_gpu |
|
float * | variance |
|
float * | variance_delta |
|
float * | variance_delta_gpu |
|
float * | variance_gpu |
|
Layer * | vf |
|
Layer * | vi |
|
Layer * | vo |
|
int | w |
| width
|
|
int | wait_stream_id |
|
float * | weight_change_gpu |
|
float * | weight_deform_gpu |
|
float * | weight_updates |
|
float * | weight_updates_gpu |
|
float * | weight_updates_gpu16 |
|
cudnnFilterDescriptor_t | weightDesc |
|
cudnnFilterDescriptor_t | weightDesc16 |
|
float * | weights |
|
float * | weights_ema |
|
float * | weights_gpu |
|
float * | weights_gpu16 |
|
WEIGHTS_NORMALIZATION_T | weights_normalization |
|
WEIGHTS_TYPE_T | weights_type |
|
Layer * | wf |
|
Layer * | wg |
|
Layer * | wh |
|
Layer * | wi |
|
Layer * | wo |
|
size_t | workspace_size |
|
Layer * | wr |
|
Layer * | wz |
|
float * | x |
|
float * | x_gpu |
|
float * | x_norm |
|
float * | x_norm_gpu |
|
int | xnor |
|
YOLO_POINT | yolo_point |
|
float * | z_cpu |
|
float * | z_gpu |
|
◆ a_avg_gpu
float* Darknet::Layer::a_avg_gpu |
◆ absolute
int Darknet::Layer::absolute |
◆ activation
◆ activation_input
float* Darknet::Layer::activation_input |
◆ activation_input_gpu
float* Darknet::Layer::activation_input_gpu |
◆ adam
◆ align_bit_weights
char* Darknet::Layer::align_bit_weights |
◆ align_bit_weights_gpu
char* Darknet::Layer::align_bit_weights_gpu |
◆ align_bit_weights_size
int Darknet::Layer::align_bit_weights_size |
◆ align_workspace_gpu
float* Darknet::Layer::align_workspace_gpu |
◆ align_workspace_size
int Darknet::Layer::align_workspace_size |
◆ alpha
float Darknet::Layer::alpha |
◆ angle
float Darknet::Layer::angle |
◆ antialiasing
int Darknet::Layer::antialiasing |
◆ assisted_excitation
int Darknet::Layer::assisted_excitation |
◆ avgpool
int Darknet::Layer::avgpool |
◆ B1
◆ B2
◆ background
int Darknet::Layer::background |
◆ backward
◆ backward_gpu
◆ batch
int Darknet::Layer::batch |
◆ batch_normalize
int Darknet::Layer::batch_normalize |
◆ bd_algo
cudnnConvolutionBwdDataAlgo_t Darknet::Layer::bd_algo |
◆ bd_algo16
cudnnConvolutionBwdDataAlgo_t Darknet::Layer::bd_algo16 |
◆ beta
float Darknet::Layer::beta |
◆ beta_nms
float Darknet::Layer::beta_nms |
◆ bf_algo
cudnnConvolutionBwdFilterAlgo_t Darknet::Layer::bf_algo |
◆ bf_algo16
cudnnConvolutionBwdFilterAlgo_t Darknet::Layer::bf_algo16 |
◆ bflops
float Darknet::Layer::bflops |
◆ bias_change_gpu
float* Darknet::Layer::bias_change_gpu |
◆ bias_m
float* Darknet::Layer::bias_m |
◆ bias_m_gpu
float* Darknet::Layer::bias_m_gpu |
◆ bias_match
int Darknet::Layer::bias_match |
◆ bias_updates
float* Darknet::Layer::bias_updates |
◆ bias_updates_gpu
float* Darknet::Layer::bias_updates_gpu |
◆ bias_v
float* Darknet::Layer::bias_v |
◆ bias_v_gpu
float* Darknet::Layer::bias_v_gpu |
◆ biases
float* Darknet::Layer::biases |
◆ biases_ema
float* Darknet::Layer::biases_ema |
◆ biases_gpu
float* Darknet::Layer::biases_gpu |
◆ bin_conv_shortcut_in_gpu
float* Darknet::Layer::bin_conv_shortcut_in_gpu |
◆ bin_conv_shortcut_out_gpu
float* Darknet::Layer::bin_conv_shortcut_out_gpu |
◆ bin_re_packed_input
uint32_t* Darknet::Layer::bin_re_packed_input |
◆ binary
int Darknet::Layer::binary |
◆ binary_input
float* Darknet::Layer::binary_input |
◆ binary_input_gpu
float* Darknet::Layer::binary_input_gpu |
◆ binary_weights
float* Darknet::Layer::binary_weights |
◆ binary_weights_gpu
float* Darknet::Layer::binary_weights_gpu |
◆ bit_align
int Darknet::Layer::bit_align |
◆ bottelneck_delta_gpu
float* Darknet::Layer::bottelneck_delta_gpu |
◆ bottelneck_hi_gpu
float* Darknet::Layer::bottelneck_hi_gpu |
◆ bottleneck
int Darknet::Layer::bottleneck |
◆ burnin_update
int Darknet::Layer::burnin_update |
◆ c_cpu
float* Darknet::Layer::c_cpu |
◆ c_gpu
float* Darknet::Layer::c_gpu |
◆ cell_cpu
float* Darknet::Layer::cell_cpu |
◆ cell_gpu
float* Darknet::Layer::cell_gpu |
◆ class_ids
int* Darknet::Layer::class_ids |
◆ class_scale
float Darknet::Layer::class_scale |
◆ classes
int Darknet::Layer::classes |
◆ classes_multipliers
float* Darknet::Layer::classes_multipliers |
◆ classfix
int Darknet::Layer::classfix |
◆ clip
float Darknet::Layer::clip |
◆ cls_normalizer
float Darknet::Layer::cls_normalizer |
◆ col_image
float* Darknet::Layer::col_image |
◆ col_image_gpu
float* Darknet::Layer::col_image_gpu |
◆ combine_cpu
float* Darknet::Layer::combine_cpu |
◆ combine_delta_cpu
float* Darknet::Layer::combine_delta_cpu |
◆ combine_delta_gpu
float* Darknet::Layer::combine_delta_gpu |
◆ combine_gpu
float* Darknet::Layer::combine_gpu |
◆ concat
float* Darknet::Layer::concat |
◆ concat_delta
float* Darknet::Layer::concat_delta |
◆ concat_delta_gpu
float* Darknet::Layer::concat_delta_gpu |
◆ concat_gpu
float* Darknet::Layer::concat_gpu |
◆ contrast_p_gpu
◆ contrastive_neg_max
int Darknet::Layer::contrastive_neg_max |
◆ convDesc
cudnnConvolutionDescriptor_t Darknet::Layer::convDesc |
◆ coord_scale
float Darknet::Layer::coord_scale |
◆ coordconv
int Darknet::Layer::coordconv |
◆ coords
int Darknet::Layer::coords |
◆ cos_sim
float* Darknet::Layer::cos_sim |
◆ cos_sim_gpu
float* Darknet::Layer::cos_sim_gpu |
◆ cost
float* Darknet::Layer::cost |
◆ cost_type
◆ counts
int* Darknet::Layer::counts |
◆ cweights
char* Darknet::Layer::cweights |
◆ dc_cpu
float* Darknet::Layer::dc_cpu |
◆ dc_gpu
float* Darknet::Layer::dc_gpu |
◆ ddstTensorDesc
cudnnTensorDescriptor_t Darknet::Layer::ddstTensorDesc |
◆ ddstTensorDesc16
cudnnTensorDescriptor_t Darknet::Layer::ddstTensorDesc16 |
◆ deform
int Darknet::Layer::deform |
◆ delta
float* Darknet::Layer::delta |
◆ delta_gpu
float* Darknet::Layer::delta_gpu |
◆ delta_normalizer
float Darknet::Layer::delta_normalizer |
◆ delta_pinned
int Darknet::Layer::delta_pinned |
◆ detection
int Darknet::Layer::detection |
◆ dets_for_show
int Darknet::Layer::dets_for_show |
◆ dets_for_track
int Darknet::Layer::dets_for_track |
◆ dh_cpu
float* Darknet::Layer::dh_cpu |
◆ dh_gpu
float* Darknet::Layer::dh_gpu |
◆ dilation
int Darknet::Layer::dilation |
◆ does_cost
int Darknet::Layer::does_cost |
◆ dont_update
int Darknet::Layer::dont_update |
◆ dontload
int Darknet::Layer::dontload |
◆ dontloadscales
int Darknet::Layer::dontloadscales |
◆ dontsave
int Darknet::Layer::dontsave |
◆ dot
float Darknet::Layer::dot |
◆ drop_blocks_scale
float* Darknet::Layer::drop_blocks_scale |
◆ drop_blocks_scale_gpu
float* Darknet::Layer::drop_blocks_scale_gpu |
◆ dropblock
int Darknet::Layer::dropblock |
◆ dropblock_size_abs
int Darknet::Layer::dropblock_size_abs |
◆ dropblock_size_rel
float Darknet::Layer::dropblock_size_rel |
◆ dsrcTensorDesc
cudnnTensorDescriptor_t Darknet::Layer::dsrcTensorDesc |
◆ dsrcTensorDesc16
cudnnTensorDescriptor_t Darknet::Layer::dsrcTensorDesc16 |
◆ dstTensorDesc
cudnnTensorDescriptor_t Darknet::Layer::dstTensorDesc |
◆ dstTensorDesc16
cudnnTensorDescriptor_t Darknet::Layer::dstTensorDesc16 |
◆ dweightDesc
cudnnFilterDescriptor_t Darknet::Layer::dweightDesc |
◆ dweightDesc16
cudnnFilterDescriptor_t Darknet::Layer::dweightDesc16 |
◆ dynamic_minibatch
int Darknet::Layer::dynamic_minibatch |
◆ embedding_layer_id
int Darknet::Layer::embedding_layer_id |
◆ embedding_output
float* Darknet::Layer::embedding_output |
◆ embedding_size
int Darknet::Layer::embedding_size |
◆ eps
float Darknet::Layer::eps |
◆ exp_cos_sim
float* Darknet::Layer::exp_cos_sim |
◆ exposure
float Darknet::Layer::exposure |
◆ extra
int Darknet::Layer::extra |
◆ f_cpu
float* Darknet::Layer::f_cpu |
◆ f_gpu
float* Darknet::Layer::f_gpu |
◆ flatten
int Darknet::Layer::flatten |
◆ flip
◆ flipped
int Darknet::Layer::flipped |
◆ focal_loss
int Darknet::Layer::focal_loss |
◆ focus
float Darknet::Layer::focus |
◆ forced
int Darknet::Layer::forced |
◆ forgot_delta
float* Darknet::Layer::forgot_delta |
◆ forgot_delta_gpu
float* Darknet::Layer::forgot_delta_gpu |
◆ forgot_state
float* Darknet::Layer::forgot_state |
◆ forgot_state_gpu
float* Darknet::Layer::forgot_state_gpu |
◆ forward
◆ forward_gpu
◆ fw_algo
cudnnConvolutionFwdAlgo_t Darknet::Layer::fw_algo |
◆ fw_algo16
cudnnConvolutionFwdAlgo_t Darknet::Layer::fw_algo16 |
◆ g_cpu
float* Darknet::Layer::g_cpu |
◆ g_gpu
float* Darknet::Layer::g_gpu |
◆ gate_delta_gpu
float* Darknet::Layer::gate_delta_gpu |
◆ gate_gpu
float* Darknet::Layer::gate_gpu |
◆ grad_centr
int Darknet::Layer::grad_centr |
◆ group_id
int Darknet::Layer::group_id |
◆ groups
int Darknet::Layer::groups |
◆ gt_gpu
float* Darknet::Layer::gt_gpu |
◆ h_cpu
float* Darknet::Layer::h_cpu |
◆ h_gpu
float* Darknet::Layer::h_gpu |
◆ hh_cpu
float* Darknet::Layer::hh_cpu |
◆ hh_gpu
float* Darknet::Layer::hh_gpu |
◆ hidden
int Darknet::Layer::hidden |
◆ history_size
int Darknet::Layer::history_size |
◆ i_cpu
float* Darknet::Layer::i_cpu |
◆ i_gpu
float* Darknet::Layer::i_gpu |
◆ ignore_thresh
float Darknet::Layer::ignore_thresh |
◆ index
int Darknet::Layer::index |
◆ indexes
int* Darknet::Layer::indexes |
◆ indexes_gpu
int* Darknet::Layer::indexes_gpu |
◆ input_antialiasing_gpu
float* Darknet::Layer::input_antialiasing_gpu |
◆ input_gate_layer
Layer* Darknet::Layer::input_gate_layer |
◆ input_h_layer
Layer* Darknet::Layer::input_h_layer |
◆ input_layer
Layer* Darknet::Layer::input_layer |
◆ input_layers
int* Darknet::Layer::input_layers |
◆ input_r_layer
Layer* Darknet::Layer::input_r_layer |
◆ input_save_layer
Layer* Darknet::Layer::input_save_layer |
◆ input_sizes
int* Darknet::Layer::input_sizes |
◆ input_sizes_gpu
int* Darknet::Layer::input_sizes_gpu |
◆ input_state_layer
Layer* Darknet::Layer::input_state_layer |
◆ input_z_layer
Layer* Darknet::Layer::input_z_layer |
◆ inputs
int Darknet::Layer::inputs |
◆ iou_loss
◆ iou_normalizer
float Darknet::Layer::iou_normalizer |
◆ iou_thresh
float Darknet::Layer::iou_thresh |
◆ iou_thresh_kind
IOU_LOSS Darknet::Layer::iou_thresh_kind |
◆ jitter
float Darknet::Layer::jitter |
◆ joint
int Darknet::Layer::joint |
◆ kappa
float Darknet::Layer::kappa |
◆ keep_delta_gpu
int Darknet::Layer::keep_delta_gpu |
◆ label_smooth_eps
float Darknet::Layer::label_smooth_eps |
◆ labels
int* Darknet::Layer::labels |
◆ last_prev_cell_gpu
float* Darknet::Layer::last_prev_cell_gpu |
◆ last_prev_state_gpu
float* Darknet::Layer::last_prev_state_gpu |
◆ layers_delta
float** Darknet::Layer::layers_delta |
◆ layers_delta_gpu
float** Darknet::Layer::layers_delta_gpu |
◆ layers_output
float** Darknet::Layer::layers_output |
◆ layers_output_gpu
float** Darknet::Layer::layers_output_gpu |
◆ lda_align
int Darknet::Layer::lda_align |
◆ learning_rate_scale
float Darknet::Layer::learning_rate_scale |
◆ log
◆ loss
float* Darknet::Layer::loss |
◆ loss_gpu
float* Darknet::Layer::loss_gpu |
◆ lstm_activation
◆ m_cbn_avg_gpu
float* Darknet::Layer::m_cbn_avg_gpu |
◆ m_gpu
float* Darknet::Layer::m_gpu |
◆ map
◆ mask
int* Darknet::Layer::mask |
◆ mask_scale
float Darknet::Layer::mask_scale |
◆ max_boxes
int Darknet::Layer::max_boxes |
◆ max_delta
float Darknet::Layer::max_delta |
◆ maxpool_depth
int Darknet::Layer::maxpool_depth |
◆ maxpool_zero_nonmax
int Darknet::Layer::maxpool_zero_nonmax |
◆ mean
float* Darknet::Layer::mean |
◆ mean_alpha
float Darknet::Layer::mean_alpha |
◆ mean_arr
float* Darknet::Layer::mean_arr |
◆ mean_arr_gpu
float* Darknet::Layer::mean_arr_gpu |
◆ mean_delta
float* Darknet::Layer::mean_delta |
◆ mean_delta_gpu
float* Darknet::Layer::mean_delta_gpu |
◆ mean_gpu
float* Darknet::Layer::mean_gpu |
number of anchors, masks (?); for example, with YOLOv4-tiny this is set to 3
◆ nbiases
int Darknet::Layer::nbiases |
unused? Seems to be no references to this in the codebase.
◆ new_coords
int Darknet::Layer::new_coords |
◆ new_lda
int Darknet::Layer::new_lda |
◆ nms_kind
◆ noadjust
int Darknet::Layer::noadjust |
◆ noloss
int Darknet::Layer::noloss |
◆ noobject_scale
float Darknet::Layer::noobject_scale |
◆ normDstTensorDesc
cudnnTensorDescriptor_t Darknet::Layer::normDstTensorDesc |
◆ normDstTensorDescF16
cudnnTensorDescriptor_t Darknet::Layer::normDstTensorDescF16 |
◆ norms
float* Darknet::Layer::norms |
◆ norms_gpu
float* Darknet::Layer::norms_gpu |
◆ normTensorDesc
cudnnTensorDescriptor_t Darknet::Layer::normTensorDesc |
◆ numload
int Darknet::Layer::numload |
◆ nweights
int Darknet::Layer::nweights |
◆ o_cpu
float* Darknet::Layer::o_cpu |
◆ o_gpu
float* Darknet::Layer::o_gpu |
◆ obj_normalizer
float Darknet::Layer::obj_normalizer |
◆ object_scale
float Darknet::Layer::object_scale |
◆ objectness
int Darknet::Layer::objectness |
◆ objectness_smooth
int Darknet::Layer::objectness_smooth |
◆ onlyforward
int Darknet::Layer::onlyforward |
◆ optimized_memory
int Darknet::Layer::optimized_memory |
◆ out_c
int Darknet::Layer::out_c |
◆ out_channels
int Darknet::Layer::out_channels |
◆ out_h
int Darknet::Layer::out_h |
◆ out_w
int Darknet::Layer::out_w |
◆ output
float* Darknet::Layer::output |
◆ output_avg_gpu
float* Darknet::Layer::output_avg_gpu |
◆ output_gpu
float* Darknet::Layer::output_gpu |
◆ output_layer
Layer* Darknet::Layer::output_layer |
◆ output_pinned
int Darknet::Layer::output_pinned |
◆ outputs
int Darknet::Layer::outputs |
◆ p_constrastive
float* Darknet::Layer::p_constrastive |
◆ pad
◆ peephole
int Darknet::Layer::peephole |
◆ poolingDesc
cudnnPoolingDescriptor_t Darknet::Layer::poolingDesc |
◆ prev_cell_cpu
float* Darknet::Layer::prev_cell_cpu |
◆ prev_cell_gpu
float* Darknet::Layer::prev_cell_gpu |
◆ prev_state
float* Darknet::Layer::prev_state |
◆ prev_state_cpu
float* Darknet::Layer::prev_state_cpu |
◆ prev_state_gpu
float* Darknet::Layer::prev_state_gpu |
◆ probability
float Darknet::Layer::probability |
◆ r_cpu
float* Darknet::Layer::r_cpu |
◆ r_gpu
float* Darknet::Layer::r_gpu |
◆ rand
float* Darknet::Layer::rand |
◆ rand_gpu
float* Darknet::Layer::rand_gpu |
◆ random
float Darknet::Layer::random |
◆ ratio
float Darknet::Layer::ratio |
◆ receptive_h
int Darknet::Layer::receptive_h |
◆ receptive_h_scale
int Darknet::Layer::receptive_h_scale |
◆ receptive_w
int Darknet::Layer::receptive_w |
◆ receptive_w_scale
int Darknet::Layer::receptive_w_scale |
◆ reorg
int Darknet::Layer::reorg |
◆ rescore
int Darknet::Layer::rescore |
◆ reset_layer
Layer* Darknet::Layer::reset_layer |
◆ resize
float Darknet::Layer::resize |
◆ reverse
float Darknet::Layer::reverse |
◆ rolling_mean
float* Darknet::Layer::rolling_mean |
◆ rolling_mean_gpu
float* Darknet::Layer::rolling_mean_gpu |
◆ rolling_variance
float* Darknet::Layer::rolling_variance |
◆ rolling_variance_gpu
float* Darknet::Layer::rolling_variance_gpu |
◆ rotate
int Darknet::Layer::rotate |
◆ saturation
float Darknet::Layer::saturation |
◆ save_delta_gpu
float* Darknet::Layer::save_delta_gpu |
◆ save_gpu
float* Darknet::Layer::save_gpu |
◆ scale
float Darknet::Layer::scale |
◆ scale_change_gpu
float* Darknet::Layer::scale_change_gpu |
◆ scale_m
float* Darknet::Layer::scale_m |
◆ scale_m_gpu
float* Darknet::Layer::scale_m_gpu |
◆ scale_updates
float* Darknet::Layer::scale_updates |
◆ scale_updates_gpu
float* Darknet::Layer::scale_updates_gpu |
◆ scale_v
float* Darknet::Layer::scale_v |
◆ scale_v_gpu
float* Darknet::Layer::scale_v_gpu |
◆ scale_wh
int Darknet::Layer::scale_wh |
◆ scale_x_y
float Darknet::Layer::scale_x_y |
◆ scales
float* Darknet::Layer::scales |
◆ scales_ema
float* Darknet::Layer::scales_ema |
◆ scales_gpu
float* Darknet::Layer::scales_gpu |
◆ self_layer
Layer* Darknet::Layer::self_layer |
◆ share_layer
Layer* Darknet::Layer::share_layer |
◆ shift
float Darknet::Layer::shift |
◆ shortcut
int Darknet::Layer::shortcut |
◆ show_details
int Darknet::Layer::show_details |
◆ side
◆ sim_thresh
float Darknet::Layer::sim_thresh |
◆ size
◆ smooth
float Darknet::Layer::smooth |
◆ softmax
int Darknet::Layer::softmax |
◆ softmax_tree
◆ spatial
int Darknet::Layer::spatial |
◆ spatial_mean
float* Darknet::Layer::spatial_mean |
◆ sqrt
◆ squared
float* Darknet::Layer::squared |
◆ squared_gpu
float* Darknet::Layer::squared_gpu |
◆ srcTensorDesc
cudnnTensorDescriptor_t Darknet::Layer::srcTensorDesc |
◆ srcTensorDesc16
cudnnTensorDescriptor_t Darknet::Layer::srcTensorDesc16 |
◆ state
float* Darknet::Layer::state |
◆ state_constrain
int Darknet::Layer::state_constrain |
◆ state_delta
float* Darknet::Layer::state_delta |
◆ state_delta_gpu
float* Darknet::Layer::state_delta_gpu |
◆ state_gate_layer
Layer* Darknet::Layer::state_gate_layer |
◆ state_gpu
float* Darknet::Layer::state_gpu |
◆ state_h_layer
Layer* Darknet::Layer::state_h_layer |
◆ state_layer
Layer* Darknet::Layer::state_layer |
◆ state_r_layer
Layer* Darknet::Layer::state_r_layer |
◆ state_save_layer
Layer* Darknet::Layer::state_save_layer |
◆ state_state_layer
Layer* Darknet::Layer::state_state_layer |
◆ state_z_layer
Layer* Darknet::Layer::state_z_layer |
◆ steps
int Darknet::Layer::steps |
◆ stopbackward
int Darknet::Layer::stopbackward |
◆ stored_c_cpu
float* Darknet::Layer::stored_c_cpu |
◆ stored_c_gpu
float* Darknet::Layer::stored_c_gpu |
◆ stored_h_cpu
float* Darknet::Layer::stored_h_cpu |
◆ stored_h_gpu
float* Darknet::Layer::stored_h_gpu |
◆ stream
int Darknet::Layer::stream |
◆ stretch
int Darknet::Layer::stretch |
◆ stretch_sway
int Darknet::Layer::stretch_sway |
◆ stride
int Darknet::Layer::stride |
◆ stride_x
int Darknet::Layer::stride_x |
◆ stride_y
int Darknet::Layer::stride_y |
◆ sums
float** Darknet::Layer::sums |
◆ sway
◆ t_bit_input
char* Darknet::Layer::t_bit_input |
◆ tanh
◆ temp2_cpu
float* Darknet::Layer::temp2_cpu |
◆ temp2_gpu
float* Darknet::Layer::temp2_gpu |
◆ temp3_cpu
float* Darknet::Layer::temp3_cpu |
◆ temp3_gpu
float* Darknet::Layer::temp3_gpu |
◆ temp_cpu
float* Darknet::Layer::temp_cpu |
◆ temp_gpu
float* Darknet::Layer::temp_gpu |
◆ temperature
float Darknet::Layer::temperature |
◆ thresh
float Darknet::Layer::thresh |
◆ time_normalizer
float Darknet::Layer::time_normalizer |
◆ total
int Darknet::Layer::total |
◆ track_ciou_norm
float Darknet::Layer::track_ciou_norm |
◆ track_history_size
int Darknet::Layer::track_history_size |
◆ train
int Darknet::Layer::train |
◆ train_only_bn
int Darknet::Layer::train_only_bn |
◆ transposed_align_workspace_gpu
float* Darknet::Layer::transposed_align_workspace_gpu |
◆ truth
int Darknet::Layer::truth |
◆ truth_size
int Darknet::Layer::truth_size |
◆ truth_thresh
float Darknet::Layer::truth_thresh |
◆ truths
int Darknet::Layer::truths |
◆ type
◆ uc_normalizer
float Darknet::Layer::uc_normalizer |
◆ uf
Layer* Darknet::Layer::uf |
◆ ug
Layer* Darknet::Layer::ug |
◆ uh
Layer* Darknet::Layer::uh |
◆ ui
Layer* Darknet::Layer::ui |
◆ uo
Layer* Darknet::Layer::uo |
◆ update
void(* Darknet::Layer::update) (Layer &l, int, float, float, float) |
◆ update_gpu
void(* Darknet::Layer::update_gpu) (Layer &l, int, float, float, float, float) |
◆ update_layer
Layer* Darknet::Layer::update_layer |
◆ ur
Layer* Darknet::Layer::ur |
◆ use_bin_output
int Darknet::Layer::use_bin_output |
◆ uz
Layer* Darknet::Layer::uz |
◆ v_cbn_avg_gpu
float* Darknet::Layer::v_cbn_avg_gpu |
◆ v_gpu
float* Darknet::Layer::v_gpu |
◆ variance
float* Darknet::Layer::variance |
◆ variance_delta
float* Darknet::Layer::variance_delta |
◆ variance_delta_gpu
float* Darknet::Layer::variance_delta_gpu |
◆ variance_gpu
float* Darknet::Layer::variance_gpu |
◆ vf
Layer* Darknet::Layer::vf |
◆ vi
Layer* Darknet::Layer::vi |
◆ vo
Layer* Darknet::Layer::vo |
◆ wait_stream_id
int Darknet::Layer::wait_stream_id |
◆ weight_change_gpu
float* Darknet::Layer::weight_change_gpu |
◆ weight_deform_gpu
float* Darknet::Layer::weight_deform_gpu |
◆ weight_updates
float* Darknet::Layer::weight_updates |
◆ weight_updates_gpu
float* Darknet::Layer::weight_updates_gpu |
◆ weight_updates_gpu16
float* Darknet::Layer::weight_updates_gpu16 |
◆ weightDesc
cudnnFilterDescriptor_t Darknet::Layer::weightDesc |
◆ weightDesc16
cudnnFilterDescriptor_t Darknet::Layer::weightDesc16 |
◆ weights
float* Darknet::Layer::weights |
◆ weights_ema
float* Darknet::Layer::weights_ema |
◆ weights_gpu
float* Darknet::Layer::weights_gpu |
◆ weights_gpu16
float* Darknet::Layer::weights_gpu16 |
◆ weights_normalization
◆ weights_type
◆ wf
Layer* Darknet::Layer::wf |
◆ wg
Layer* Darknet::Layer::wg |
◆ wh
Layer* Darknet::Layer::wh |
◆ wi
Layer* Darknet::Layer::wi |
◆ wo
Layer* Darknet::Layer::wo |
◆ workspace_size
size_t Darknet::Layer::workspace_size |
◆ wr
Layer* Darknet::Layer::wr |
◆ wz
Layer* Darknet::Layer::wz |
◆ x_gpu
float* Darknet::Layer::x_gpu |
◆ x_norm
float* Darknet::Layer::x_norm |
◆ x_norm_gpu
float* Darknet::Layer::x_norm_gpu |
◆ xnor
◆ yolo_point
◆ z_cpu
float* Darknet::Layer::z_cpu |
◆ z_gpu
float* Darknet::Layer::z_gpu |
The documentation for this struct was generated from the following file: