Darknet/YOLO v3.0-208-g0b6f60f-dirty
Object Detection Framework
 
Loading...
Searching...
No Matches
blas.cpp File Reference
Include dependency graph for blas.cpp:

Functions

void axpy_cpu (int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
 
void backward_shortcut_multilayer_cpu (int size, int src_outputs, int batch, int n, int *outputs_of_layers, float **layers_delta, float *delta_out, float *delta_in, float *weights, float *weight_updates, int nweights, float *in, float **layers_output, WEIGHTS_NORMALIZATION_T weights_normalization)
 
int check_sim (size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size)
 
void const_cpu (int N, float ALPHA, float *X, int INCX)
 
void constrain_cpu (int size, float ALPHA, float *X)
 
void copy_cpu (int N, float *X, int INCX, float *Y, int INCY)
 
float cosine_similarity (float *A, float *B, unsigned int feature_size)
 
void deinter_cpu (int NX, float *X, int NY, float *Y, int B, float *OUT)
 
float dot_cpu (int N, float *X, int INCX, float *Y, int INCY)
 
void fill_cpu (int N, float ALPHA, float *X, int INCX)
 
float find_P_constrastive (size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size)
 
float find_sim (size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size)
 
void fix_nan_and_inf_cpu (float *input, size_t size)
 
void flatten (float *x, int size, int layers, int batch, int forward)
 
void get_embedding (float *src, int src_w, int src_h, int src_c, int embedding_size, int cur_w, int cur_h, int cur_n, int cur_b, float *dst)
 
int get_sim_P_index (size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size)
 
void grad_contrastive_loss_negative (size_t i, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *p_constrastive, float *delta, int wh)
 
void grad_contrastive_loss_negative_f (size_t i, int *class_ids, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta, int wh, contrastive_params *contrast_p, int contrast_p_size, int neg_max)
 
void grad_contrastive_loss_positive (size_t i, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *p_constrastive, float *delta, int wh)
 
void grad_contrastive_loss_positive_f (size_t i, int *class_ids, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta, int wh, contrastive_params *contrast_p, int contrast_p_size)
 
void inter_cpu (int NX, float *X, int NY, float *Y, int B, float *OUT)
 
void l1_cpu (int n, float *pred, float *truth, float *delta, float *error)
 
void l2_cpu (int n, float *pred, float *truth, float *delta, float *error)
 
void logistic_x_ent_cpu (int n, float *pred, float *truth, float *delta, float *error)
 
float math_vector_length (float *A, unsigned int feature_size)
 
void mean_cpu (float *x, int batch, int filters, int spatial, float *mean)
 
void mul_cpu (int N, float *X, int INCX, float *Y, int INCY)
 
void mult_add_into_cpu (int N, float *X, float *Y, float *Z)
 
void normalize_cpu (float *x, float *mean, float *variance, int batch, int filters, int spatial)
 
float P_constrastive (size_t i, size_t l, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *exp_cos_sim)
 
float P_constrastive_f (size_t i, size_t l, int *labels, float **z, unsigned int feature_size, float temperature, contrastive_params *contrast_p, int contrast_p_size)
 
float P_constrastive_f_det (size_t il, int *labels, float **z, unsigned int feature_size, float temperature, contrastive_params *contrast_p, int contrast_p_size)
 
void pow_cpu (int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
 
static float relu (float src)
 
void reorg_cpu (float *x, int out_w, int out_h, int out_c, int batch, int stride, int forward, float *out)
 
void scal_add_cpu (int N, float ALPHA, float BETA, float *X, int INCX)
 
void scal_cpu (int N, float ALPHA, float *X, int INCX)
 
void shortcut_cpu (int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out)
 
void shortcut_multilayer_cpu (int size, int src_outputs, int batch, int n, int *outputs_of_layers, float **layers_output, float *out, float *in, float *weights, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization)
 
void smooth_l1_cpu (int n, float *pred, float *truth, float *delta, float *error)
 
void softmax (float *input, int n, float temp, float *output, int stride)
 
void softmax_cpu (float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output)
 
void softmax_x_ent_cpu (int n, float *pred, float *truth, float *delta, float *error)
 
void upsample_cpu (float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
 
void variance_cpu (float *x, float *mean, int batch, int filters, int spatial, float *variance)
 
void weighted_delta_cpu (float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc)
 
void weighted_sum_cpu (float *a, float *b, float *s, int n, float *c)
 

Function Documentation

◆ axpy_cpu()

void axpy_cpu ( int  N,
float  ALPHA,
float *  X,
int  INCX,
float *  Y,
int  INCY 
)

◆ backward_shortcut_multilayer_cpu()

void backward_shortcut_multilayer_cpu ( int  size,
int  src_outputs,
int  batch,
int  n,
int *  outputs_of_layers,
float **  layers_delta,
float *  delta_out,
float *  delta_in,
float *  weights,
float *  weight_updates,
int  nweights,
float *  in,
float **  layers_output,
WEIGHTS_NORMALIZATION_T  weights_normalization 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ check_sim()

int check_sim ( size_t  i,
size_t  j,
contrastive_params contrast_p,
int  contrast_p_size 
)

◆ const_cpu()

void const_cpu ( int  N,
float  ALPHA,
float *  X,
int  INCX 
)

◆ constrain_cpu()

void constrain_cpu ( int  size,
float  ALPHA,
float *  X 
)

◆ copy_cpu()

void copy_cpu ( int  N,
float *  X,
int  INCX,
float *  Y,
int  INCY 
)
Here is the caller graph for this function:

◆ cosine_similarity()

float cosine_similarity ( float *  A,
float *  B,
unsigned int  feature_size 
)
Here is the caller graph for this function:

◆ deinter_cpu()

void deinter_cpu ( int  NX,
float *  X,
int  NY,
float *  Y,
int  B,
float *  OUT 
)

◆ dot_cpu()

float dot_cpu ( int  N,
float *  X,
int  INCX,
float *  Y,
int  INCY 
)
Here is the caller graph for this function:

◆ fill_cpu()

void fill_cpu ( int  N,
float  ALPHA,
float *  X,
int  INCX 
)
Here is the caller graph for this function:

◆ find_P_constrastive()

float find_P_constrastive ( size_t  i,
size_t  j,
contrastive_params contrast_p,
int  contrast_p_size 
)
Here is the call graph for this function:

◆ find_sim()

float find_sim ( size_t  i,
size_t  j,
contrastive_params contrast_p,
int  contrast_p_size 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ fix_nan_and_inf_cpu()

void fix_nan_and_inf_cpu ( float *  input,
size_t  size 
)

◆ flatten()

void flatten ( float *  x,
int  size,
int  layers,
int  batch,
int  forward 
)
Here is the caller graph for this function:

◆ get_embedding()

void get_embedding ( float *  src,
int  src_w,
int  src_h,
int  src_c,
int  embedding_size,
int  cur_w,
int  cur_h,
int  cur_n,
int  cur_b,
float *  dst 
)
Here is the caller graph for this function:

◆ get_sim_P_index()

int get_sim_P_index ( size_t  i,
size_t  j,
contrastive_params contrast_p,
int  contrast_p_size 
)
Here is the caller graph for this function:

◆ grad_contrastive_loss_negative()

void grad_contrastive_loss_negative ( size_t  i,
int *  labels,
size_t  num_of_samples,
float **  z,
unsigned int  feature_size,
float  temperature,
float *  cos_sim,
float *  p_constrastive,
float *  delta,
int  wh 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ grad_contrastive_loss_negative_f()

void grad_contrastive_loss_negative_f ( size_t  i,
int *  class_ids,
int *  labels,
size_t  num_of_samples,
float **  z,
unsigned int  feature_size,
float  temperature,
float *  delta,
int  wh,
contrastive_params contrast_p,
int  contrast_p_size,
int  neg_max 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ grad_contrastive_loss_positive()

void grad_contrastive_loss_positive ( size_t  i,
int *  labels,
size_t  num_of_samples,
float **  z,
unsigned int  feature_size,
float  temperature,
float *  cos_sim,
float *  p_constrastive,
float *  delta,
int  wh 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ grad_contrastive_loss_positive_f()

void grad_contrastive_loss_positive_f ( size_t  i,
int *  class_ids,
int *  labels,
size_t  num_of_samples,
float **  z,
unsigned int  feature_size,
float  temperature,
float *  delta,
int  wh,
contrastive_params contrast_p,
int  contrast_p_size 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ inter_cpu()

void inter_cpu ( int  NX,
float *  X,
int  NY,
float *  Y,
int  B,
float *  OUT 
)

◆ l1_cpu()

void l1_cpu ( int  n,
float *  pred,
float *  truth,
float *  delta,
float *  error 
)

◆ l2_cpu()

void l2_cpu ( int  n,
float *  pred,
float *  truth,
float *  delta,
float *  error 
)
Here is the caller graph for this function:

◆ logistic_x_ent_cpu()

void logistic_x_ent_cpu ( int  n,
float *  pred,
float *  truth,
float *  delta,
float *  error 
)

◆ math_vector_length()

float math_vector_length ( float *  A,
unsigned int  feature_size 
)
Here is the caller graph for this function:

◆ mean_cpu()

void mean_cpu ( float *  x,
int  batch,
int  filters,
int  spatial,
float *  mean 
)
Here is the caller graph for this function:

◆ mul_cpu()

void mul_cpu ( int  N,
float *  X,
int  INCX,
float *  Y,
int  INCY 
)
Here is the caller graph for this function:

◆ mult_add_into_cpu()

void mult_add_into_cpu ( int  N,
float *  X,
float *  Y,
float *  Z 
)

◆ normalize_cpu()

void normalize_cpu ( float *  x,
float *  mean,
float *  variance,
int  batch,
int  filters,
int  spatial 
)
Here is the caller graph for this function:

◆ P_constrastive()

float P_constrastive ( size_t  i,
size_t  l,
int *  labels,
size_t  num_of_samples,
float **  z,
unsigned int  feature_size,
float  temperature,
float *  cos_sim,
float *  exp_cos_sim 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ P_constrastive_f()

float P_constrastive_f ( size_t  i,
size_t  l,
int *  labels,
float **  z,
unsigned int  feature_size,
float  temperature,
contrastive_params contrast_p,
int  contrast_p_size 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ P_constrastive_f_det()

float P_constrastive_f_det ( size_t  il,
int *  labels,
float **  z,
unsigned int  feature_size,
float  temperature,
contrastive_params contrast_p,
int  contrast_p_size 
)
Here is the caller graph for this function:

◆ pow_cpu()

void pow_cpu ( int  N,
float  ALPHA,
float *  X,
int  INCX,
float *  Y,
int  INCY 
)

◆ relu()

static float relu ( float  src)
static
Here is the caller graph for this function:

◆ reorg_cpu()

void reorg_cpu ( float *  x,
int  out_w,
int  out_h,
int  out_c,
int  batch,
int  stride,
int  forward,
float *  out 
)
Here is the caller graph for this function:

◆ scal_add_cpu()

void scal_add_cpu ( int  N,
float  ALPHA,
float  BETA,
float *  X,
int  INCX 
)
Here is the caller graph for this function:

◆ scal_cpu()

void scal_cpu ( int  N,
float  ALPHA,
float *  X,
int  INCX 
)
Here is the caller graph for this function:

◆ shortcut_cpu()

void shortcut_cpu ( int  batch,
int  w1,
int  h1,
int  c1,
float *  add,
int  w2,
int  h2,
int  c2,
float *  out 
)
Here is the call graph for this function:

◆ shortcut_multilayer_cpu()

void shortcut_multilayer_cpu ( int  size,
int  src_outputs,
int  batch,
int  n,
int *  outputs_of_layers,
float **  layers_output,
float *  out,
float *  in,
float *  weights,
int  nweights,
WEIGHTS_NORMALIZATION_T  weights_normalization 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ smooth_l1_cpu()

void smooth_l1_cpu ( int  n,
float *  pred,
float *  truth,
float *  delta,
float *  error 
)
Here is the caller graph for this function:

◆ softmax()

void softmax ( float *  input,
int  n,
float  temp,
float *  output,
int  stride 
)
Here is the caller graph for this function:

◆ softmax_cpu()

void softmax_cpu ( float *  input,
int  n,
int  batch,
int  batch_offset,
int  groups,
int  group_offset,
int  stride,
float  temp,
float *  output 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ softmax_x_ent_cpu()

void softmax_x_ent_cpu ( int  n,
float *  pred,
float *  truth,
float *  delta,
float *  error 
)
Here is the caller graph for this function:

◆ upsample_cpu()

void upsample_cpu ( float *  in,
int  w,
int  h,
int  c,
int  batch,
int  stride,
int  forward,
float  scale,
float *  out 
)
Here is the caller graph for this function:

◆ variance_cpu()

void variance_cpu ( float *  x,
float *  mean,
int  batch,
int  filters,
int  spatial,
float *  variance 
)
Here is the caller graph for this function:

◆ weighted_delta_cpu()

void weighted_delta_cpu ( float *  a,
float *  b,
float *  s,
float *  da,
float *  db,
float *  ds,
int  n,
float *  dc 
)

◆ weighted_sum_cpu()

void weighted_sum_cpu ( float *  a,
float *  b,
float *  s,
int  n,
float *  c 
)