Darknet/YOLO v3.0-208-g0b6f60f-dirty
Object Detection Framework
 
Loading...
Searching...
No Matches
convolutional_kernels.cu File Reference

Functions

void assisted_activation2_gpu (float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches)
 
__global__ void assisted_activation2_kernel (float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches)
 
void assisted_activation_gpu (float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches)
 
__global__ void assisted_activation_kernel (float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches)
 
void assisted_excitation_forward_gpu (Darknet::Layer &l, Darknet::NetworkState state)
 
void backward_convolutional_layer_gpu (Darknet::Layer &l, Darknet::NetworkState state)
 
void binarize_gpu (float *x, int n, float *binary)
 
void binarize_input_gpu (float *input, int n, int size, float *binary)
 
__global__ void binarize_input_kernel (float *input, int n, int size, float *binary)
 
__global__ void binarize_kernel (float *x, int n, float *binary)
 
void binarize_weights_gpu (float *weights, int n, int size, float *binary)
 
__global__ void binarize_weights_kernel (float *weights, int n, int size, float *binary)
 
__global__ void binarize_weights_mean_kernel (float *weights, int n, int size, float *binary, float *mean_arr_gpu)
 
void calc_avg_activation_gpu (float *src, float *dst, int size, int channels, int batches)
 
__global__ void calc_avg_activation_kernel (float *src, float *dst, int size, int channels, int batches)
 
void cuda_convert_f16_to_f32 (float *input_f16, size_t size, float *output_f32)
 
void cuda_convert_f32_to_f16 (float *input_f32, size_t size, float *output_f16)
 
__global__ void cuda_f16_to_f32 (half *input_f16, size_t size, float *output_f32)
 
__global__ void cuda_f32_to_f16 (float *input_f32, size_t size, half *output_f16)
 
half * cuda_make_f16_from_f32_array (float *src, size_t n)
 
void fast_binarize_weights_gpu (float *weights, int n, int size, float *binary, float *mean_arr_gpu)
 
void forward_convolutional_layer_gpu (Darknet::Layer &l, Darknet::NetworkState state)
 
void pull_convolutional_layer (Darknet::Layer &l)
 
void push_convolutional_layer (Darknet::Layer &l)
 
__global__ void reduce_kernel (float *weights, int n, int size, float *mean_arr_gpu)
 
__global__ void set_zero_kernel (float *src, int size)
 
void update_convolutional_layer_gpu (Darknet::Layer &l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale)
 
__inline__ __device__ float warpAllReduceSum (float val)
 

Function Documentation

◆ assisted_activation2_gpu()

void assisted_activation2_gpu ( float  alpha,
float *  output,
float *  gt_gpu,
float *  a_avg_gpu,
int  size,
int  channels,
int  batches 
)
Here is the call graph for this function:

◆ assisted_activation2_kernel()

__global__ void assisted_activation2_kernel ( float  alpha,
float *  output,
float *  gt_gpu,
float *  a_avg_gpu,
int  size,
int  channels,
int  batches 
)
Here is the caller graph for this function:

◆ assisted_activation_gpu()

void assisted_activation_gpu ( float  alpha,
float *  output,
float *  gt_gpu,
float *  a_avg_gpu,
int  size,
int  channels,
int  batches 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ assisted_activation_kernel()

__global__ void assisted_activation_kernel ( float  alpha,
float *  output,
float *  gt_gpu,
float *  a_avg_gpu,
int  size,
int  channels,
int  batches 
)
Here is the caller graph for this function:

◆ assisted_excitation_forward_gpu()

void assisted_excitation_forward_gpu ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ backward_convolutional_layer_gpu()

void backward_convolutional_layer_gpu ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ binarize_gpu()

void binarize_gpu ( float *  x,
int  n,
float *  binary 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ binarize_input_gpu()

void binarize_input_gpu ( float *  input,
int  n,
int  size,
float *  binary 
)
Here is the call graph for this function:

◆ binarize_input_kernel()

__global__ void binarize_input_kernel ( float *  input,
int  n,
int  size,
float *  binary 
)
Here is the caller graph for this function:

◆ binarize_kernel()

__global__ void binarize_kernel ( float *  x,
int  n,
float *  binary 
)
Here is the caller graph for this function:

◆ binarize_weights_gpu()

void binarize_weights_gpu ( float *  weights,
int  n,
int  size,
float *  binary 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ binarize_weights_kernel()

__global__ void binarize_weights_kernel ( float *  weights,
int  n,
int  size,
float *  binary 
)
Here is the caller graph for this function:

◆ binarize_weights_mean_kernel()

__global__ void binarize_weights_mean_kernel ( float *  weights,
int  n,
int  size,
float *  binary,
float *  mean_arr_gpu 
)
Here is the caller graph for this function:

◆ calc_avg_activation_gpu()

void calc_avg_activation_gpu ( float *  src,
float *  dst,
int  size,
int  channels,
int  batches 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ calc_avg_activation_kernel()

__global__ void calc_avg_activation_kernel ( float *  src,
float *  dst,
int  size,
int  channels,
int  batches 
)
Here is the caller graph for this function:

◆ cuda_convert_f16_to_f32()

void cuda_convert_f16_to_f32 ( float *  input_f16,
size_t  size,
float *  output_f32 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ cuda_convert_f32_to_f16()

void cuda_convert_f32_to_f16 ( float *  input_f32,
size_t  size,
float *  output_f16 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ cuda_f16_to_f32()

__global__ void cuda_f16_to_f32 ( half *  input_f16,
size_t  size,
float *  output_f32 
)
Here is the caller graph for this function:

◆ cuda_f32_to_f16()

__global__ void cuda_f32_to_f16 ( float *  input_f32,
size_t  size,
half *  output_f16 
)
Here is the caller graph for this function:

◆ cuda_make_f16_from_f32_array()

half * cuda_make_f16_from_f32_array ( float *  src,
size_t  n 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ fast_binarize_weights_gpu()

void fast_binarize_weights_gpu ( float *  weights,
int  n,
int  size,
float *  binary,
float *  mean_arr_gpu 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ forward_convolutional_layer_gpu()

void forward_convolutional_layer_gpu ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the caller graph for this function:

◆ pull_convolutional_layer()

void pull_convolutional_layer ( Darknet::Layer l)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ push_convolutional_layer()

void push_convolutional_layer ( Darknet::Layer l)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ reduce_kernel()

__global__ void reduce_kernel ( float *  weights,
int  n,
int  size,
float *  mean_arr_gpu 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ set_zero_kernel()

__global__ void set_zero_kernel ( float *  src,
int  size 
)
Here is the caller graph for this function:

◆ update_convolutional_layer_gpu()

void update_convolutional_layer_gpu ( Darknet::Layer l,
int  batch,
float  learning_rate_init,
float  momentum,
float  decay,
float  loss_scale 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ warpAllReduceSum()

__inline__ __device__ float warpAllReduceSum ( float  val)
Here is the caller graph for this function: