Darknet/YOLO  v3.0-70-ga82af77
Object Detection Framework
layer Struct Reference
Collaboration diagram for layer:

Public Attributes

LAYER_TYPE type
 
ACTIVATION activation
 
ACTIVATION lstm_activation
 
COST_TYPE cost_type
 
void(* forward )(struct layer, struct network_state)
 
void(* backward )(struct layer, struct network_state)
 
void(* update )(struct layer, int, float, float, float)
 
void(* forward_gpu )(struct layer, struct network_state)
 
void(* backward_gpu )(struct layer, struct network_state)
 
void(* update_gpu )(struct layer, int, float, float, float, float)
 
layershare_layer
 
int train
 
int avgpool
 
int batch_normalize
 
int shortcut
 
int batch
 
int dynamic_minibatch
 
int forced
 
int flipped
 
int inputs
 
int outputs
 
float mean_alpha
 
int nweights
 
int nbiases
 unused? Seems to be no references to this in the codebase. More...
 
int extra
 
int truths
 
int h
 
int w
 
int c
 
int out_h
 
int out_w
 
int out_c
 
int n
 
int max_boxes
 
int truth_size
 
int groups
 
int group_id
 
int size
 
int side
 
int stride
 
int stride_x
 
int stride_y
 
int dilation
 
int antialiasing
 
int maxpool_depth
 
int maxpool_zero_nonmax
 
int out_channels
 
float reverse
 
int coordconv
 
int flatten
 
int spatial
 
int pad
 
int sqrt
 
int flip
 
int index
 
int scale_wh
 
int binary
 
int xnor
 
int peephole
 
int use_bin_output
 
int keep_delta_gpu
 
int optimized_memory
 
int steps
 
int history_size
 
int bottleneck
 
float time_normalizer
 
int state_constrain
 
int hidden
 
int truth
 
float smooth
 
float dot
 
int deform
 
int grad_centr
 
int sway
 
int rotate
 
int stretch
 
int stretch_sway
 
float angle
 
float jitter
 
float resize
 
float saturation
 
float exposure
 
float shift
 
float ratio
 
float learning_rate_scale
 
float clip
 
int focal_loss
 
float * classes_multipliers
 
float label_smooth_eps
 
int noloss
 
int softmax
 
int classes
 
int detection
 
int embedding_layer_id
 
float * embedding_output
 
int embedding_size
 
float sim_thresh
 
int track_history_size
 
int dets_for_track
 
int dets_for_show
 
float track_ciou_norm
 
int coords
 
int background
 
int rescore
 
int objectness
 
int does_cost
 
int joint
 
int noadjust
 
int reorg
 
int log
 
int tanh
 
int * mask
 
int total
 
float bflops
 
int adam
 
float B1
 
float B2
 
float eps
 
int t
 
float alpha
 
float beta
 
float kappa
 
float coord_scale
 
float object_scale
 
float noobject_scale
 
float mask_scale
 
float class_scale
 
int bias_match
 
float random
 
float ignore_thresh
 
float truth_thresh
 
float iou_thresh
 
float thresh
 
float focus
 
int classfix
 
int absolute
 
int assisted_excitation
 
int onlyforward
 
int stopbackward
 
int train_only_bn
 
int dont_update
 
int burnin_update
 
int dontload
 
int dontsave
 
int dontloadscales
 
int numload
 
float temperature
 
float probability
 
float dropblock_size_rel
 
int dropblock_size_abs
 
int dropblock
 
float scale
 
int receptive_w
 
int receptive_h
 
int receptive_w_scale
 
int receptive_h_scale
 
char * cweights
 
int * indexes
 
int * input_layers
 
int * input_sizes
 
float ** layers_output
 
float ** layers_delta
 
WEIGHTS_TYPE_T weights_type
 
WEIGHTS_NORMALIZATION_T weights_normalization
 
int * map
 
int * counts
 
float ** sums
 
float * rand
 
float * cost
 
int * labels
 
int * class_ids
 
int contrastive_neg_max
 
float * cos_sim
 
float * exp_cos_sim
 
float * p_constrastive
 
contrastive_paramscontrast_p_gpu
 
float * state
 
float * prev_state
 
float * forgot_state
 
float * forgot_delta
 
float * state_delta
 
float * combine_cpu
 
float * combine_delta_cpu
 
float * concat
 
float * concat_delta
 
float * binary_weights
 
float * biases
 
float * bias_updates
 
float * scales
 
float * scale_updates
 
float * weights_ema
 
float * biases_ema
 
float * scales_ema
 
float * weights
 
float * weight_updates
 
float scale_x_y
 
int objectness_smooth
 
int new_coords
 
int show_details
 
float max_delta
 
float uc_normalizer
 
float iou_normalizer
 
float obj_normalizer
 
float cls_normalizer
 
float delta_normalizer
 
IOU_LOSS iou_loss
 
IOU_LOSS iou_thresh_kind
 
NMS_KIND nms_kind
 
float beta_nms
 
YOLO_POINT yolo_point
 
char * align_bit_weights_gpu
 
float * mean_arr_gpu
 
float * align_workspace_gpu
 
float * transposed_align_workspace_gpu
 
int align_workspace_size
 
char * align_bit_weights
 
float * mean_arr
 
int align_bit_weights_size
 
int lda_align
 
int new_lda
 
int bit_align
 
float * col_image
 
float * delta
 
float * output
 
float * activation_input
 
int delta_pinned
 
int output_pinned
 
float * loss
 
float * squared
 
float * norms
 
float * spatial_mean
 
float * mean
 
float * variance
 
float * mean_delta
 
float * variance_delta
 
float * rolling_mean
 
float * rolling_variance
 
float * x
 
float * x_norm
 
float * m
 
float * v
 
float * bias_m
 
float * bias_v
 
float * scale_m
 
float * scale_v
 
float * z_cpu
 
float * r_cpu
 
float * h_cpu
 
float * stored_h_cpu
 
float * prev_state_cpu
 
float * temp_cpu
 
float * temp2_cpu
 
float * temp3_cpu
 
float * dh_cpu
 
float * hh_cpu
 
float * prev_cell_cpu
 
float * cell_cpu
 
float * f_cpu
 
float * i_cpu
 
float * g_cpu
 
float * o_cpu
 
float * c_cpu
 
float * stored_c_cpu
 
float * dc_cpu
 
float * binary_input
 
uint32_t * bin_re_packed_input
 
char * t_bit_input
 
struct layerinput_layer
 
struct layerself_layer
 
struct layeroutput_layer
 
struct layerreset_layer
 
struct layerupdate_layer
 
struct layerstate_layer
 
struct layerinput_gate_layer
 
struct layerstate_gate_layer
 
struct layerinput_save_layer
 
struct layerstate_save_layer
 
struct layerinput_state_layer
 
struct layerstate_state_layer
 
struct layerinput_z_layer
 
struct layerstate_z_layer
 
struct layerinput_r_layer
 
struct layerstate_r_layer
 
struct layerinput_h_layer
 
struct layerstate_h_layer
 
struct layerwz
 
struct layeruz
 
struct layerwr
 
struct layerur
 
struct layerwh
 
struct layeruh
 
struct layeruo
 
struct layerwo
 
struct layervo
 
struct layeruf
 
struct layerwf
 
struct layervf
 
struct layerui
 
struct layerwi
 
struct layervi
 
struct layerug
 
struct layerwg
 
treesoftmax_tree
 
size_t workspace_size
 
int * indexes_gpu
 
int stream
 
int wait_stream_id
 
float * z_gpu
 
float * r_gpu
 
float * h_gpu
 
float * stored_h_gpu
 
float * bottelneck_hi_gpu
 
float * bottelneck_delta_gpu
 
float * temp_gpu
 
float * temp2_gpu
 
float * temp3_gpu
 
float * dh_gpu
 
float * hh_gpu
 
float * prev_cell_gpu
 
float * prev_state_gpu
 
float * last_prev_state_gpu
 
float * last_prev_cell_gpu
 
float * cell_gpu
 
float * f_gpu
 
float * i_gpu
 
float * g_gpu
 
float * o_gpu
 
float * c_gpu
 
float * stored_c_gpu
 
float * dc_gpu
 
float * m_gpu
 
float * v_gpu
 
float * bias_m_gpu
 
float * scale_m_gpu
 
float * bias_v_gpu
 
float * scale_v_gpu
 
float * combine_gpu
 
float * combine_delta_gpu
 
float * forgot_state_gpu
 
float * forgot_delta_gpu
 
float * state_gpu
 
float * state_delta_gpu
 
float * gate_gpu
 
float * gate_delta_gpu
 
float * save_gpu
 
float * save_delta_gpu
 
float * concat_gpu
 
float * concat_delta_gpu
 
float * binary_input_gpu
 
float * binary_weights_gpu
 
float * bin_conv_shortcut_in_gpu
 
float * bin_conv_shortcut_out_gpu
 
float * mean_gpu
 
float * variance_gpu
 
float * m_cbn_avg_gpu
 
float * v_cbn_avg_gpu
 
float * rolling_mean_gpu
 
float * rolling_variance_gpu
 
float * variance_delta_gpu
 
float * mean_delta_gpu
 
float * col_image_gpu
 
float * x_gpu
 
float * x_norm_gpu
 
float * weights_gpu
 
float * weight_updates_gpu
 
float * weight_deform_gpu
 
float * weight_change_gpu
 
float * weights_gpu16
 
float * weight_updates_gpu16
 
float * biases_gpu
 
float * bias_updates_gpu
 
float * bias_change_gpu
 
float * scales_gpu
 
float * scale_updates_gpu
 
float * scale_change_gpu
 
float * input_antialiasing_gpu
 
float * output_gpu
 
float * output_avg_gpu
 
float * activation_input_gpu
 
float * loss_gpu
 
float * delta_gpu
 
float * cos_sim_gpu
 
float * rand_gpu
 
float * drop_blocks_scale
 
float * drop_blocks_scale_gpu
 
float * squared_gpu
 
float * norms_gpu
 
float * gt_gpu
 
float * a_avg_gpu
 
int * input_sizes_gpu
 
float ** layers_output_gpu
 
float ** layers_delta_gpu
 
cudnnTensorDescriptor_t srcTensorDesc
 
cudnnTensorDescriptor_t dstTensorDesc
 
cudnnTensorDescriptor_t srcTensorDesc16
 
cudnnTensorDescriptor_t dstTensorDesc16
 
cudnnTensorDescriptor_t dsrcTensorDesc
 
cudnnTensorDescriptor_t ddstTensorDesc
 
cudnnTensorDescriptor_t dsrcTensorDesc16
 
cudnnTensorDescriptor_t ddstTensorDesc16
 
cudnnTensorDescriptor_t normTensorDesc
 
cudnnTensorDescriptor_t normDstTensorDesc
 
cudnnTensorDescriptor_t normDstTensorDescF16
 
cudnnFilterDescriptor_t weightDesc
 
cudnnFilterDescriptor_t weightDesc16
 
cudnnFilterDescriptor_t dweightDesc
 
cudnnFilterDescriptor_t dweightDesc16
 
cudnnConvolutionDescriptor_t convDesc
 
cudnnConvolutionFwdAlgo_t fw_algo
 
cudnnConvolutionFwdAlgo_t fw_algo16
 
cudnnConvolutionBwdDataAlgo_t bd_algo
 
cudnnConvolutionBwdDataAlgo_t bd_algo16
 
cudnnConvolutionBwdFilterAlgo_t bf_algo
 
cudnnConvolutionBwdFilterAlgo_t bf_algo16
 
cudnnPoolingDescriptor_t poolingDesc
 

Member Data Documentation

◆ type

LAYER_TYPE layer::type

◆ activation

ACTIVATION layer::activation

◆ lstm_activation

ACTIVATION layer::lstm_activation

◆ cost_type

COST_TYPE layer::cost_type

◆ forward

void(* layer::forward) (struct layer, struct network_state)

◆ backward

void(* layer::backward) (struct layer, struct network_state)

◆ update

void(* layer::update) (struct layer, int, float, float, float)

◆ forward_gpu

void(* layer::forward_gpu) (struct layer, struct network_state)

◆ backward_gpu

void(* layer::backward_gpu) (struct layer, struct network_state)

◆ update_gpu

void(* layer::update_gpu) (struct layer, int, float, float, float, float)

◆ share_layer

layer* layer::share_layer

◆ train

int layer::train

◆ avgpool

int layer::avgpool

◆ batch_normalize

int layer::batch_normalize

◆ shortcut

int layer::shortcut

◆ batch

int layer::batch

◆ dynamic_minibatch

int layer::dynamic_minibatch

◆ forced

int layer::forced

◆ flipped

int layer::flipped

◆ inputs

int layer::inputs

◆ outputs

int layer::outputs

◆ mean_alpha

float layer::mean_alpha

◆ nweights

int layer::nweights

◆ nbiases

int layer::nbiases

unused? Seems to be no references to this in the codebase.

◆ extra

int layer::extra

◆ truths

int layer::truths

◆ h

int layer::h

◆ w

int layer::w

◆ c

int layer::c

◆ out_h

int layer::out_h

◆ out_w

int layer::out_w

◆ out_c

int layer::out_c

◆ n

int layer::n

◆ max_boxes

int layer::max_boxes

◆ truth_size

int layer::truth_size

◆ groups

int layer::groups

◆ group_id

int layer::group_id

◆ size

int layer::size

◆ side

int layer::side

◆ stride

int layer::stride

◆ stride_x

int layer::stride_x

◆ stride_y

int layer::stride_y

◆ dilation

int layer::dilation

◆ antialiasing

int layer::antialiasing

◆ maxpool_depth

int layer::maxpool_depth

◆ maxpool_zero_nonmax

int layer::maxpool_zero_nonmax

◆ out_channels

int layer::out_channels

◆ reverse

float layer::reverse

◆ coordconv

int layer::coordconv

◆ flatten

int layer::flatten

◆ spatial

int layer::spatial

◆ pad

int layer::pad

◆ sqrt

int layer::sqrt

◆ flip

int layer::flip

◆ index

int layer::index

◆ scale_wh

int layer::scale_wh

◆ binary

int layer::binary

◆ xnor

int layer::xnor

◆ peephole

int layer::peephole

◆ use_bin_output

int layer::use_bin_output

◆ keep_delta_gpu

int layer::keep_delta_gpu

◆ optimized_memory

int layer::optimized_memory

◆ steps

int layer::steps

◆ history_size

int layer::history_size

◆ bottleneck

int layer::bottleneck

◆ time_normalizer

float layer::time_normalizer

◆ state_constrain

int layer::state_constrain

◆ hidden

int layer::hidden

◆ truth

int layer::truth

◆ smooth

float layer::smooth

◆ dot

float layer::dot

◆ deform

int layer::deform

◆ grad_centr

int layer::grad_centr

◆ sway

int layer::sway

◆ rotate

int layer::rotate

◆ stretch

int layer::stretch

◆ stretch_sway

int layer::stretch_sway

◆ angle

float layer::angle

◆ jitter

float layer::jitter

◆ resize

float layer::resize

◆ saturation

float layer::saturation

◆ exposure

float layer::exposure

◆ shift

float layer::shift

◆ ratio

float layer::ratio

◆ learning_rate_scale

float layer::learning_rate_scale

◆ clip

float layer::clip

◆ focal_loss

int layer::focal_loss

◆ classes_multipliers

float* layer::classes_multipliers

◆ label_smooth_eps

float layer::label_smooth_eps

◆ noloss

int layer::noloss

◆ softmax

int layer::softmax

◆ classes

int layer::classes

◆ detection

int layer::detection

◆ embedding_layer_id

int layer::embedding_layer_id

◆ embedding_output

float* layer::embedding_output

◆ embedding_size

int layer::embedding_size

◆ sim_thresh

float layer::sim_thresh

◆ track_history_size

int layer::track_history_size

◆ dets_for_track

int layer::dets_for_track

◆ dets_for_show

int layer::dets_for_show

◆ track_ciou_norm

float layer::track_ciou_norm

◆ coords

int layer::coords

◆ background

int layer::background

◆ rescore

int layer::rescore

◆ objectness

int layer::objectness

◆ does_cost

int layer::does_cost

◆ joint

int layer::joint

◆ noadjust

int layer::noadjust

◆ reorg

int layer::reorg

◆ log

int layer::log

◆ tanh

int layer::tanh

◆ mask

int* layer::mask

◆ total

int layer::total

◆ bflops

float layer::bflops

◆ adam

int layer::adam

◆ B1

float layer::B1

◆ B2

float layer::B2

◆ eps

float layer::eps

◆ t

int layer::t

◆ alpha

float layer::alpha

◆ beta

float layer::beta

◆ kappa

float layer::kappa

◆ coord_scale

float layer::coord_scale

◆ object_scale

float layer::object_scale

◆ noobject_scale

float layer::noobject_scale

◆ mask_scale

float layer::mask_scale

◆ class_scale

float layer::class_scale

◆ bias_match

int layer::bias_match

◆ random

float layer::random

◆ ignore_thresh

float layer::ignore_thresh

◆ truth_thresh

float layer::truth_thresh

◆ iou_thresh

float layer::iou_thresh

◆ thresh

float layer::thresh

◆ focus

float layer::focus

◆ classfix

int layer::classfix

◆ absolute

int layer::absolute

◆ assisted_excitation

int layer::assisted_excitation

◆ onlyforward

int layer::onlyforward

◆ stopbackward

int layer::stopbackward

◆ train_only_bn

int layer::train_only_bn

◆ dont_update

int layer::dont_update

◆ burnin_update

int layer::burnin_update

◆ dontload

int layer::dontload

◆ dontsave

int layer::dontsave

◆ dontloadscales

int layer::dontloadscales

◆ numload

int layer::numload

◆ temperature

float layer::temperature

◆ probability

float layer::probability

◆ dropblock_size_rel

float layer::dropblock_size_rel

◆ dropblock_size_abs

int layer::dropblock_size_abs

◆ dropblock

int layer::dropblock

◆ scale

float layer::scale

◆ receptive_w

int layer::receptive_w

◆ receptive_h

int layer::receptive_h

◆ receptive_w_scale

int layer::receptive_w_scale

◆ receptive_h_scale

int layer::receptive_h_scale

◆ cweights

char* layer::cweights

◆ indexes

int* layer::indexes

◆ input_layers

int* layer::input_layers

◆ input_sizes

int* layer::input_sizes

◆ layers_output

float** layer::layers_output

◆ layers_delta

float** layer::layers_delta

◆ weights_type

WEIGHTS_TYPE_T layer::weights_type

◆ weights_normalization

WEIGHTS_NORMALIZATION_T layer::weights_normalization

◆ map

int* layer::map

◆ counts

int* layer::counts

◆ sums

float** layer::sums

◆ rand

float* layer::rand

◆ cost

float* layer::cost

◆ labels

int* layer::labels

◆ class_ids

int* layer::class_ids

◆ contrastive_neg_max

int layer::contrastive_neg_max

◆ cos_sim

float* layer::cos_sim

◆ exp_cos_sim

float* layer::exp_cos_sim

◆ p_constrastive

float* layer::p_constrastive

◆ contrast_p_gpu

contrastive_params* layer::contrast_p_gpu

◆ state

float* layer::state

◆ prev_state

float* layer::prev_state

◆ forgot_state

float* layer::forgot_state

◆ forgot_delta

float* layer::forgot_delta

◆ state_delta

float* layer::state_delta

◆ combine_cpu

float* layer::combine_cpu

◆ combine_delta_cpu

float* layer::combine_delta_cpu

◆ concat

float* layer::concat

◆ concat_delta

float* layer::concat_delta

◆ binary_weights

float* layer::binary_weights

◆ biases

float* layer::biases

◆ bias_updates

float* layer::bias_updates

◆ scales

float* layer::scales

◆ scale_updates

float* layer::scale_updates

◆ weights_ema

float* layer::weights_ema

◆ biases_ema

float* layer::biases_ema

◆ scales_ema

float* layer::scales_ema

◆ weights

float* layer::weights

◆ weight_updates

float* layer::weight_updates

◆ scale_x_y

float layer::scale_x_y

◆ objectness_smooth

int layer::objectness_smooth

◆ new_coords

int layer::new_coords

◆ show_details

int layer::show_details

◆ max_delta

float layer::max_delta

◆ uc_normalizer

float layer::uc_normalizer

◆ iou_normalizer

float layer::iou_normalizer

◆ obj_normalizer

float layer::obj_normalizer

◆ cls_normalizer

float layer::cls_normalizer

◆ delta_normalizer

float layer::delta_normalizer

◆ iou_loss

IOU_LOSS layer::iou_loss

◆ iou_thresh_kind

IOU_LOSS layer::iou_thresh_kind

◆ nms_kind

NMS_KIND layer::nms_kind

◆ beta_nms

float layer::beta_nms

◆ yolo_point

YOLO_POINT layer::yolo_point

◆ align_bit_weights_gpu

char* layer::align_bit_weights_gpu

◆ mean_arr_gpu

float* layer::mean_arr_gpu

◆ align_workspace_gpu

float* layer::align_workspace_gpu

◆ transposed_align_workspace_gpu

float* layer::transposed_align_workspace_gpu

◆ align_workspace_size

int layer::align_workspace_size

◆ align_bit_weights

char* layer::align_bit_weights

◆ mean_arr

float* layer::mean_arr

◆ align_bit_weights_size

int layer::align_bit_weights_size

◆ lda_align

int layer::lda_align

◆ new_lda

int layer::new_lda

◆ bit_align

int layer::bit_align

◆ col_image

float* layer::col_image

◆ delta

float* layer::delta

◆ output

float* layer::output

◆ activation_input

float* layer::activation_input

◆ delta_pinned

int layer::delta_pinned

◆ output_pinned

int layer::output_pinned

◆ loss

float* layer::loss

◆ squared

float* layer::squared

◆ norms

float* layer::norms

◆ spatial_mean

float* layer::spatial_mean

◆ mean

float* layer::mean

◆ variance

float* layer::variance

◆ mean_delta

float* layer::mean_delta

◆ variance_delta

float* layer::variance_delta

◆ rolling_mean

float* layer::rolling_mean

◆ rolling_variance

float* layer::rolling_variance

◆ x

float* layer::x

◆ x_norm

float* layer::x_norm

◆ m

float* layer::m

◆ v

float* layer::v

◆ bias_m

float* layer::bias_m

◆ bias_v

float* layer::bias_v

◆ scale_m

float* layer::scale_m

◆ scale_v

float* layer::scale_v

◆ z_cpu

float* layer::z_cpu

◆ r_cpu

float* layer::r_cpu

◆ h_cpu

float* layer::h_cpu

◆ stored_h_cpu

float* layer::stored_h_cpu

◆ prev_state_cpu

float* layer::prev_state_cpu

◆ temp_cpu

float* layer::temp_cpu

◆ temp2_cpu

float* layer::temp2_cpu

◆ temp3_cpu

float* layer::temp3_cpu

◆ dh_cpu

float* layer::dh_cpu

◆ hh_cpu

float* layer::hh_cpu

◆ prev_cell_cpu

float* layer::prev_cell_cpu

◆ cell_cpu

float* layer::cell_cpu

◆ f_cpu

float* layer::f_cpu

◆ i_cpu

float* layer::i_cpu

◆ g_cpu

float* layer::g_cpu

◆ o_cpu

float* layer::o_cpu

◆ c_cpu

float* layer::c_cpu

◆ stored_c_cpu

float* layer::stored_c_cpu

◆ dc_cpu

float* layer::dc_cpu

◆ binary_input

float* layer::binary_input

◆ bin_re_packed_input

uint32_t* layer::bin_re_packed_input

◆ t_bit_input

char* layer::t_bit_input

◆ input_layer

struct layer* layer::input_layer

◆ self_layer

struct layer* layer::self_layer

◆ output_layer

struct layer* layer::output_layer

◆ reset_layer

struct layer* layer::reset_layer

◆ update_layer

struct layer* layer::update_layer

◆ state_layer

struct layer* layer::state_layer

◆ input_gate_layer

struct layer* layer::input_gate_layer

◆ state_gate_layer

struct layer* layer::state_gate_layer

◆ input_save_layer

struct layer* layer::input_save_layer

◆ state_save_layer

struct layer* layer::state_save_layer

◆ input_state_layer

struct layer* layer::input_state_layer

◆ state_state_layer

struct layer* layer::state_state_layer

◆ input_z_layer

struct layer* layer::input_z_layer

◆ state_z_layer

struct layer* layer::state_z_layer

◆ input_r_layer

struct layer* layer::input_r_layer

◆ state_r_layer

struct layer* layer::state_r_layer

◆ input_h_layer

struct layer* layer::input_h_layer

◆ state_h_layer

struct layer* layer::state_h_layer

◆ wz

struct layer* layer::wz

◆ uz

struct layer* layer::uz

◆ wr

struct layer* layer::wr

◆ ur

struct layer* layer::ur

◆ wh

struct layer* layer::wh

◆ uh

struct layer* layer::uh

◆ uo

struct layer* layer::uo

◆ wo

struct layer* layer::wo

◆ vo

struct layer* layer::vo

◆ uf

struct layer* layer::uf

◆ wf

struct layer* layer::wf

◆ vf

struct layer* layer::vf

◆ ui

struct layer* layer::ui

◆ wi

struct layer* layer::wi

◆ vi

struct layer* layer::vi

◆ ug

struct layer* layer::ug

◆ wg

struct layer* layer::wg

◆ softmax_tree

tree* layer::softmax_tree

◆ workspace_size

size_t layer::workspace_size

◆ indexes_gpu

int* layer::indexes_gpu

◆ stream

int layer::stream

◆ wait_stream_id

int layer::wait_stream_id

◆ z_gpu

float* layer::z_gpu

◆ r_gpu

float* layer::r_gpu

◆ h_gpu

float* layer::h_gpu

◆ stored_h_gpu

float* layer::stored_h_gpu

◆ bottelneck_hi_gpu

float* layer::bottelneck_hi_gpu

◆ bottelneck_delta_gpu

float* layer::bottelneck_delta_gpu

◆ temp_gpu

float* layer::temp_gpu

◆ temp2_gpu

float* layer::temp2_gpu

◆ temp3_gpu

float* layer::temp3_gpu

◆ dh_gpu

float* layer::dh_gpu

◆ hh_gpu

float* layer::hh_gpu

◆ prev_cell_gpu

float* layer::prev_cell_gpu

◆ prev_state_gpu

float* layer::prev_state_gpu

◆ last_prev_state_gpu

float* layer::last_prev_state_gpu

◆ last_prev_cell_gpu

float* layer::last_prev_cell_gpu

◆ cell_gpu

float* layer::cell_gpu

◆ f_gpu

float* layer::f_gpu

◆ i_gpu

float* layer::i_gpu

◆ g_gpu

float* layer::g_gpu

◆ o_gpu

float* layer::o_gpu

◆ c_gpu

float* layer::c_gpu

◆ stored_c_gpu

float* layer::stored_c_gpu

◆ dc_gpu

float* layer::dc_gpu

◆ m_gpu

float* layer::m_gpu

◆ v_gpu

float* layer::v_gpu

◆ bias_m_gpu

float* layer::bias_m_gpu

◆ scale_m_gpu

float* layer::scale_m_gpu

◆ bias_v_gpu

float* layer::bias_v_gpu

◆ scale_v_gpu

float* layer::scale_v_gpu

◆ combine_gpu

float* layer::combine_gpu

◆ combine_delta_gpu

float* layer::combine_delta_gpu

◆ forgot_state_gpu

float* layer::forgot_state_gpu

◆ forgot_delta_gpu

float* layer::forgot_delta_gpu

◆ state_gpu

float* layer::state_gpu

◆ state_delta_gpu

float* layer::state_delta_gpu

◆ gate_gpu

float* layer::gate_gpu

◆ gate_delta_gpu

float* layer::gate_delta_gpu

◆ save_gpu

float* layer::save_gpu

◆ save_delta_gpu

float* layer::save_delta_gpu

◆ concat_gpu

float* layer::concat_gpu

◆ concat_delta_gpu

float* layer::concat_delta_gpu

◆ binary_input_gpu

float* layer::binary_input_gpu

◆ binary_weights_gpu

float* layer::binary_weights_gpu

◆ bin_conv_shortcut_in_gpu

float* layer::bin_conv_shortcut_in_gpu

◆ bin_conv_shortcut_out_gpu

float* layer::bin_conv_shortcut_out_gpu

◆ mean_gpu

float* layer::mean_gpu

◆ variance_gpu

float* layer::variance_gpu

◆ m_cbn_avg_gpu

float* layer::m_cbn_avg_gpu

◆ v_cbn_avg_gpu

float* layer::v_cbn_avg_gpu

◆ rolling_mean_gpu

float* layer::rolling_mean_gpu

◆ rolling_variance_gpu

float* layer::rolling_variance_gpu

◆ variance_delta_gpu

float* layer::variance_delta_gpu

◆ mean_delta_gpu

float* layer::mean_delta_gpu

◆ col_image_gpu

float* layer::col_image_gpu

◆ x_gpu

float* layer::x_gpu

◆ x_norm_gpu

float* layer::x_norm_gpu

◆ weights_gpu

float* layer::weights_gpu

◆ weight_updates_gpu

float* layer::weight_updates_gpu

◆ weight_deform_gpu

float* layer::weight_deform_gpu

◆ weight_change_gpu

float* layer::weight_change_gpu

◆ weights_gpu16

float* layer::weights_gpu16

◆ weight_updates_gpu16

float* layer::weight_updates_gpu16

◆ biases_gpu

float* layer::biases_gpu

◆ bias_updates_gpu

float* layer::bias_updates_gpu

◆ bias_change_gpu

float* layer::bias_change_gpu

◆ scales_gpu

float* layer::scales_gpu

◆ scale_updates_gpu

float* layer::scale_updates_gpu

◆ scale_change_gpu

float* layer::scale_change_gpu

◆ input_antialiasing_gpu

float* layer::input_antialiasing_gpu

◆ output_gpu

float* layer::output_gpu

◆ output_avg_gpu

float* layer::output_avg_gpu

◆ activation_input_gpu

float* layer::activation_input_gpu

◆ loss_gpu

float* layer::loss_gpu

◆ delta_gpu

float* layer::delta_gpu

◆ cos_sim_gpu

float* layer::cos_sim_gpu

◆ rand_gpu

float* layer::rand_gpu

◆ drop_blocks_scale

float* layer::drop_blocks_scale

◆ drop_blocks_scale_gpu

float* layer::drop_blocks_scale_gpu

◆ squared_gpu

float* layer::squared_gpu

◆ norms_gpu

float* layer::norms_gpu

◆ gt_gpu

float* layer::gt_gpu

◆ a_avg_gpu

float* layer::a_avg_gpu

◆ input_sizes_gpu

int* layer::input_sizes_gpu

◆ layers_output_gpu

float** layer::layers_output_gpu

◆ layers_delta_gpu

float** layer::layers_delta_gpu

◆ srcTensorDesc

cudnnTensorDescriptor_t layer::srcTensorDesc

◆ dstTensorDesc

cudnnTensorDescriptor_t layer::dstTensorDesc

◆ srcTensorDesc16

cudnnTensorDescriptor_t layer::srcTensorDesc16

◆ dstTensorDesc16

cudnnTensorDescriptor_t layer::dstTensorDesc16

◆ dsrcTensorDesc

cudnnTensorDescriptor_t layer::dsrcTensorDesc

◆ ddstTensorDesc

cudnnTensorDescriptor_t layer::ddstTensorDesc

◆ dsrcTensorDesc16

cudnnTensorDescriptor_t layer::dsrcTensorDesc16

◆ ddstTensorDesc16

cudnnTensorDescriptor_t layer::ddstTensorDesc16

◆ normTensorDesc

cudnnTensorDescriptor_t layer::normTensorDesc

◆ normDstTensorDesc

cudnnTensorDescriptor_t layer::normDstTensorDesc

◆ normDstTensorDescF16

cudnnTensorDescriptor_t layer::normDstTensorDescF16

◆ weightDesc

cudnnFilterDescriptor_t layer::weightDesc

◆ weightDesc16

cudnnFilterDescriptor_t layer::weightDesc16

◆ dweightDesc

cudnnFilterDescriptor_t layer::dweightDesc

◆ dweightDesc16

cudnnFilterDescriptor_t layer::dweightDesc16

◆ convDesc

cudnnConvolutionDescriptor_t layer::convDesc

◆ fw_algo

cudnnConvolutionFwdAlgo_t layer::fw_algo

◆ fw_algo16

cudnnConvolutionFwdAlgo_t layer::fw_algo16

◆ bd_algo

cudnnConvolutionBwdDataAlgo_t layer::bd_algo

◆ bd_algo16

cudnnConvolutionBwdDataAlgo_t layer::bd_algo16

◆ bf_algo

cudnnConvolutionBwdFilterAlgo_t layer::bf_algo

◆ bf_algo16

cudnnConvolutionBwdFilterAlgo_t layer::bf_algo16

◆ poolingDesc

cudnnPoolingDescriptor_t layer::poolingDesc

The documentation for this struct was generated from the following file: