Functions | |
void | add_bias (float *output, float *biases, int batch, int n, int size) |
void | assisted_excitation_forward (Darknet::Layer &l, Darknet::NetworkState state) |
void | backward_bias (float *bias_updates, float *delta, int batch, int n, int size) |
void | backward_convolutional_layer (Darknet::Layer &l, Darknet::NetworkState state) |
void | binarize_input (float *input, int n, int size, float *binary) |
void | binarize_weights (float *weights, int n, int size, float *binary) |
void | binary_align_weights (Darknet::Layer *l) |
int | convolutional_out_height (const Darknet::Layer &l) |
int | convolutional_out_width (const Darknet::Layer &l) |
void | create_convolutional_cudnn_tensors (Darknet::Layer *l) |
void | cudnn_convolutional_setup (Darknet::Layer *l, int cudnn_preference, size_t workspace_size_specify) |
void | denormalize_convolutional_layer (Darknet::Layer &l) |
void | forward_convolutional_layer (Darknet::Layer &l, Darknet::NetworkState state) |
void | free_convolutional_batchnorm (Darknet::Layer *l) |
void | gemm_nn_custom (int M, int N, int K, float ALPHA, float *A, int lda, float *B, int ldb, float *C, int ldc) |
Darknet::Image | get_convolutional_delta (const Darknet::Layer &l) |
Darknet::Image | get_convolutional_image (const Darknet::Layer &l) |
Darknet::Image | get_convolutional_weight (const Darknet::Layer &l, int i) |
size_t | get_convolutional_workspace_size (const Darknet::Layer &l) |
Darknet::Layer | make_convolutional_layer (int batch, int steps, int h, int w, int c, int n, int groups, int size, int stride_x, int stride_y, int dilation, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam, int use_bin_output, int index, int antialiasing, Darknet::Layer *share_layer, int assisted_excitation, int deform, int train) |
void | rescale_weights (Darknet::Layer &l, float scale, float trans) |
void | resize_convolutional_layer (Darknet::Layer *l, int w, int h) |
void | rgbgr_weights (const Darknet::Layer &l) |
void | scale_bias (float *output, float *scales, int batch, int n, int size) |
void | set_specified_workspace_limit (Darknet::Layer *l, size_t workspace_size_limit) |
void | swap_binary (Darknet::Layer *l) |
void | test_convolutional_layer () |
void | update_convolutional_layer (Darknet::Layer &l, int batch, float learning_rate_init, float momentum, float decay) |
Darknet::Image * | visualize_convolutional_layer (const Darknet::Layer &l, const char *window, Darknet::Image *prev_weights) |
void add_bias | ( | float * | output, |
float * | biases, | ||
int | batch, | ||
int | n, | ||
int | size | ||
) |
void assisted_excitation_forward | ( | Darknet::Layer & | l, |
Darknet::NetworkState | state | ||
) |
void backward_bias | ( | float * | bias_updates, |
float * | delta, | ||
int | batch, | ||
int | n, | ||
int | size | ||
) |
void backward_convolutional_layer | ( | Darknet::Layer & | l, |
Darknet::NetworkState | state | ||
) |
void binarize_input | ( | float * | input, |
int | n, | ||
int | size, | ||
float * | binary | ||
) |
void binarize_weights | ( | float * | weights, |
int | n, | ||
int | size, | ||
float * | binary | ||
) |
void binary_align_weights | ( | Darknet::Layer * | l | ) |
int convolutional_out_height | ( | const Darknet::Layer & | l | ) |
int convolutional_out_width | ( | const Darknet::Layer & | l | ) |
void create_convolutional_cudnn_tensors | ( | Darknet::Layer * | l | ) |
void cudnn_convolutional_setup | ( | Darknet::Layer * | l, |
int | cudnn_preference, | ||
size_t | workspace_size_specify | ||
) |
void denormalize_convolutional_layer | ( | Darknet::Layer & | l | ) |
void forward_convolutional_layer | ( | Darknet::Layer & | l, |
Darknet::NetworkState | state | ||
) |
void free_convolutional_batchnorm | ( | Darknet::Layer * | l | ) |
void gemm_nn_custom | ( | int | M, |
int | N, | ||
int | K, | ||
float | ALPHA, | ||
float * | A, | ||
int | lda, | ||
float * | B, | ||
int | ldb, | ||
float * | C, | ||
int | ldc | ||
) |
Darknet::Image get_convolutional_delta | ( | const Darknet::Layer & | l | ) |
Darknet::Image get_convolutional_image | ( | const Darknet::Layer & | l | ) |
Darknet::Image get_convolutional_weight | ( | const Darknet::Layer & | l, |
int | i | ||
) |
size_t get_convolutional_workspace_size | ( | const Darknet::Layer & | l | ) |
Darknet::Layer make_convolutional_layer | ( | int | batch, |
int | steps, | ||
int | h, | ||
int | w, | ||
int | c, | ||
int | n, | ||
int | groups, | ||
int | size, | ||
int | stride_x, | ||
int | stride_y, | ||
int | dilation, | ||
int | padding, | ||
ACTIVATION | activation, | ||
int | batch_normalize, | ||
int | binary, | ||
int | xnor, | ||
int | adam, | ||
int | use_bin_output, | ||
int | index, | ||
int | antialiasing, | ||
Darknet::Layer * | share_layer, | ||
int | assisted_excitation, | ||
int | deform, | ||
int | train | ||
) |
void rescale_weights | ( | Darknet::Layer & | l, |
float | scale, | ||
float | trans | ||
) |
void resize_convolutional_layer | ( | Darknet::Layer * | l, |
int | w, | ||
int | h | ||
) |
void rgbgr_weights | ( | const Darknet::Layer & | l | ) |
void scale_bias | ( | float * | output, |
float * | scales, | ||
int | batch, | ||
int | n, | ||
int | size | ||
) |
void set_specified_workspace_limit | ( | Darknet::Layer * | l, |
size_t | workspace_size_limit | ||
) |
void swap_binary | ( | Darknet::Layer * | l | ) |
void test_convolutional_layer | ( | ) |
void update_convolutional_layer | ( | Darknet::Layer & | l, |
int | batch, | ||
float | learning_rate_init, | ||
float | momentum, | ||
float | decay | ||
) |
Darknet::Image * visualize_convolutional_layer | ( | const Darknet::Layer & | l, |
const char * | window, | ||
Darknet::Image * | prev_weights | ||
) |