Darknet/YOLO v3.0-208-g0b6f60f-dirty
Object Detection Framework
 
Loading...
Searching...
No Matches
convolutional_layer.hpp File Reference
Include dependency graph for convolutional_layer.hpp:
This graph shows which files directly or indirectly include this file:

Functions

void add_bias (float *output, float *biases, int batch, int n, int size)
 
void add_bias_gpu (float *output, float *biases, int batch, int n, int size)
 
void assisted_excitation_forward (Darknet::Layer &l, Darknet::NetworkState state)
 
void assisted_excitation_forward_gpu (Darknet::Layer &l, Darknet::NetworkState state)
 
void backward_bias (float *bias_updates, float *delta, int batch, int n, int size)
 
void backward_bias_gpu (float *bias_updates, float *delta, int batch, int n, int size)
 
void backward_convolutional_layer (Darknet::Layer &l, Darknet::NetworkState state)
 
void backward_convolutional_layer_gpu (Darknet::Layer &l, Darknet::NetworkState state)
 
void binarize_weights (float *weights, int n, int size, float *binary)
 
void binarize_weights2 (float *weights, int n, int size, char *binary, float *scales)
 
void binary_align_weights (Darknet::Layer *l)
 
int convolutional_out_height (const Darknet::Layer &l)
 
int convolutional_out_width (const Darknet::Layer &l)
 
void create_convolutional_cudnn_tensors (Darknet::Layer *l)
 
void cuda_convert_f32_to_f16 (float *input_f32, size_t size, float *output_f16)
 
void cudnn_convolutional_setup (Darknet::Layer *l, int cudnn_preference, size_t workspace_size_specify)
 
void denormalize_convolutional_layer (Darknet::Layer &l)
 
void forward_convolutional_layer (Darknet::Layer &l, Darknet::NetworkState state)
 
void forward_convolutional_layer_gpu (Darknet::Layer &l, Darknet::NetworkState state)
 
void free_convolutional_batchnorm (Darknet::Layer *l)
 
Darknet::Image get_convolutional_delta (const Darknet::Layer &l)
 
Darknet::Image get_convolutional_image (const Darknet::Layer &l)
 
Darknet::Image get_convolutional_weight (const Darknet::Layer &l, int i)
 
size_t get_convolutional_workspace_size (const Darknet::Layer &l)
 
Darknet::Layer make_convolutional_layer (int batch, int steps, int h, int w, int c, int n, int groups, int size, int stride_x, int stride_y, int dilation, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam, int use_bin_output, int index, int antialiasing, Darknet::Layer *share_layer, int assisted_excitation, int deform, int train)
 
void pull_convolutional_layer (Darknet::Layer &l)
 
void push_convolutional_layer (Darknet::Layer &l)
 
void rescale_weights (Darknet::Layer &l, float scale, float trans)
 
void resize_convolutional_layer (Darknet::Layer *l, int w, int h)
 
void rgbgr_weights (const Darknet::Layer &l)
 
void set_specified_workspace_limit (Darknet::Layer *l, size_t workspace_size_limit)
 
void swap_binary (Darknet::Layer *l)
 
void update_convolutional_layer (Darknet::Layer &l, int batch, float learning_rate, float momentum, float decay)
 
void update_convolutional_layer_gpu (Darknet::Layer &l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
 
Darknet::Imagevisualize_convolutional_layer (const Darknet::Layer &l, const char *window, Darknet::Image *prev_weights)
 

Function Documentation

◆ add_bias()

void add_bias ( float *  output,
float *  biases,
int  batch,
int  n,
int  size 
)
Here is the caller graph for this function:

◆ add_bias_gpu()

void add_bias_gpu ( float *  output,
float *  biases,
int  batch,
int  n,
int  size 
)

◆ assisted_excitation_forward()

void assisted_excitation_forward ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ assisted_excitation_forward_gpu()

void assisted_excitation_forward_gpu ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ backward_bias()

void backward_bias ( float *  bias_updates,
float *  delta,
int  batch,
int  n,
int  size 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ backward_bias_gpu()

void backward_bias_gpu ( float *  bias_updates,
float *  delta,
int  batch,
int  n,
int  size 
)

◆ backward_convolutional_layer()

void backward_convolutional_layer ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ backward_convolutional_layer_gpu()

void backward_convolutional_layer_gpu ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ binarize_weights()

void binarize_weights ( float *  weights,
int  n,
int  size,
float *  binary 
)
Here is the caller graph for this function:

◆ binarize_weights2()

void binarize_weights2 ( float *  weights,
int  n,
int  size,
char *  binary,
float *  scales 
)

◆ binary_align_weights()

void binary_align_weights ( Darknet::Layer l)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ convolutional_out_height()

int convolutional_out_height ( const Darknet::Layer l)
Here is the caller graph for this function:

◆ convolutional_out_width()

int convolutional_out_width ( const Darknet::Layer l)
Here is the caller graph for this function:

◆ create_convolutional_cudnn_tensors()

void create_convolutional_cudnn_tensors ( Darknet::Layer l)
Here is the caller graph for this function:

◆ cuda_convert_f32_to_f16()

void cuda_convert_f32_to_f16 ( float *  input_f32,
size_t  size,
float *  output_f16 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ cudnn_convolutional_setup()

void cudnn_convolutional_setup ( Darknet::Layer l,
int  cudnn_preference,
size_t  workspace_size_specify 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ denormalize_convolutional_layer()

void denormalize_convolutional_layer ( Darknet::Layer l)
Here is the caller graph for this function:

◆ forward_convolutional_layer()

void forward_convolutional_layer ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ forward_convolutional_layer_gpu()

void forward_convolutional_layer_gpu ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the caller graph for this function:

◆ free_convolutional_batchnorm()

void free_convolutional_batchnorm ( Darknet::Layer l)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ get_convolutional_delta()

Darknet::Image get_convolutional_delta ( const Darknet::Layer l)
Here is the call graph for this function:

◆ get_convolutional_image()

Darknet::Image get_convolutional_image ( const Darknet::Layer l)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ get_convolutional_weight()

Darknet::Image get_convolutional_weight ( const Darknet::Layer l,
int  i 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ get_convolutional_workspace_size()

size_t get_convolutional_workspace_size ( const Darknet::Layer l)
Here is the caller graph for this function:

◆ make_convolutional_layer()

Darknet::Layer make_convolutional_layer ( int  batch,
int  steps,
int  h,
int  w,
int  c,
int  n,
int  groups,
int  size,
int  stride_x,
int  stride_y,
int  dilation,
int  padding,
ACTIVATION  activation,
int  batch_normalize,
int  binary,
int  xnor,
int  adam,
int  use_bin_output,
int  index,
int  antialiasing,
Darknet::Layer share_layer,
int  assisted_excitation,
int  deform,
int  train 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ pull_convolutional_layer()

void pull_convolutional_layer ( Darknet::Layer l)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ push_convolutional_layer()

void push_convolutional_layer ( Darknet::Layer l)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ rescale_weights()

void rescale_weights ( Darknet::Layer l,
float  scale,
float  trans 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ resize_convolutional_layer()

void resize_convolutional_layer ( Darknet::Layer l,
int  w,
int  h 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ rgbgr_weights()

void rgbgr_weights ( const Darknet::Layer l)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ set_specified_workspace_limit()

void set_specified_workspace_limit ( Darknet::Layer l,
size_t  workspace_size_limit 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ swap_binary()

void swap_binary ( Darknet::Layer l)
Here is the caller graph for this function:

◆ update_convolutional_layer()

void update_convolutional_layer ( Darknet::Layer l,
int  batch,
float  learning_rate,
float  momentum,
float  decay 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ update_convolutional_layer_gpu()

void update_convolutional_layer_gpu ( Darknet::Layer l,
int  batch,
float  learning_rate,
float  momentum,
float  decay,
float  loss_scale 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ visualize_convolutional_layer()

Darknet::Image * visualize_convolutional_layer ( const Darknet::Layer l,
const char *  window,
Darknet::Image prev_weights 
)
Here is the call graph for this function:
Here is the caller graph for this function: