Darknet/YOLO v3.0-208-g0b6f60f-dirty
Object Detection Framework
 
Loading...
Searching...
No Matches
Darknet::Network Struct Reference

Neural network structure. Contains all of the layers. Created by Darknet::CfgFile::create_network(). More...

#include "darknet_network.hpp"

Collaboration diagram for Darknet::Network:

Public Attributes

int adam
 
int adversarial
 
float adversarial_lr
 
float angle
 
float aspect
 
int attention
 
int augment_speed
 
float B1
 
float B2
 
float * badlabels_reject_threshold
 
float badlabels_rejection_percentage
 
int batch
 
int batches_cycle_mult
 
int batches_per_cycle
 
int benchmark_layers
 
int blur
 
int burn_in
 
int c
 The number of channels for the network. Typically 3 when working with RGB images.
 
int center
 
float clip
 
int contrastive
 
int contrastive_color
 
int contrastive_jit_flip
 
float * cost
 
void * cuda_graph
 
void * cuda_graph_exec
 
int * cuda_graph_ready
 
int cudnn_half
 
int * cur_iteration
 
int current_subdivision
 
float decay
 
float * delta
 
float * delta_gpu
 
float * delta_rolling_avg
 
float * delta_rolling_max
 
float * delta_rolling_std
 
Darknet::NetworkDetailsdetails
 
int dynamic_minibatch
 
float ema_alpha
 
float eps
 
int equidistant_point
 
float exposure
 
int flip
 horizontal flip 50% probability augmentaiont for classifier training (default = 1)
 
float gamma
 
int gaussian_noise
 
float * global_delta_gpu
 
int gpu_index
 
int h
 The height of the network. Must be divisible by 32. E.g, 480.
 
Darknet::Treehierarchy
 
float hue
 
int index
 
int init_sequential_subdivisions
 
float * input
 
float ** input16_gpu
 
float ** input_gpu
 
float * input_pinned_cpu
 memory allocated using cudaHostAlloc() which is used to transfer between the GPU and CPU
 
int input_pinned_cpu_flag
 
float * input_state_gpu
 
int inputs
 
float label_smooth_eps
 
Darknet::Layerlayers
 Each section in the .cfg file is converted into a layer.
 
float learning_rate
 
float learning_rate_max
 
float learning_rate_min
 
int letter_box
 
float loss_scale
 
int max_batches
 
float max_chart_loss
 
size_t max_delta_gpu_size
 
size_t * max_input16_size
 
size_t * max_output16_size
 
int mixup
 
float momentum
 
int mosaic_bound
 
int n
 The number of layers in the network.
 
int num_boxes
 
float num_sigmas_reject_badlabels
 
int num_steps
 
int optimized_memory
 
float * output
 
float ** output16_gpu
 
float * output_gpu
 
int outputs
 
learning_rate_policy policy
 
float power
 
int resize_step
 
int * rewritten_bbox
 
float saturation
 
float scale
 
float * scales
 
uint64_t * seen
 
float * seq_scales
 
int sequential_subdivisions
 
float * state_delta_gpu
 
int step
 
int * steps
 
int subdivisions
 
int * t
 
int time_steps
 
int * total_bbox
 
int track
 
int train
 
int train_images_num
 
float * truth
 
float ** truth_gpu
 
int truths
 
int try_fix_nan
 
int use_cuda_graph
 
int w
 The width of the network. Must be divisible by 32. E.g., 640.
 
int wait_stream
 
int weights_reject_freq
 
float * workspace
 
size_t workspace_size_limit
 

Detailed Description

Neural network structure. Contains all of the layers. Created by Darknet::CfgFile::create_network().

Member Data Documentation

◆ adam

int Darknet::Network::adam

◆ adversarial

int Darknet::Network::adversarial

◆ adversarial_lr

float Darknet::Network::adversarial_lr

◆ angle

float Darknet::Network::angle

◆ aspect

float Darknet::Network::aspect

◆ attention

int Darknet::Network::attention

◆ augment_speed

int Darknet::Network::augment_speed

◆ B1

float Darknet::Network::B1

◆ B2

float Darknet::Network::B2

◆ badlabels_reject_threshold

float* Darknet::Network::badlabels_reject_threshold

◆ badlabels_rejection_percentage

float Darknet::Network::badlabels_rejection_percentage

◆ batch

int Darknet::Network::batch

◆ batches_cycle_mult

int Darknet::Network::batches_cycle_mult

◆ batches_per_cycle

int Darknet::Network::batches_per_cycle

◆ benchmark_layers

int Darknet::Network::benchmark_layers

◆ blur

int Darknet::Network::blur

◆ burn_in

int Darknet::Network::burn_in

◆ c

int Darknet::Network::c

The number of channels for the network. Typically 3 when working with RGB images.

◆ center

int Darknet::Network::center

◆ clip

float Darknet::Network::clip

◆ contrastive

int Darknet::Network::contrastive

◆ contrastive_color

int Darknet::Network::contrastive_color

◆ contrastive_jit_flip

int Darknet::Network::contrastive_jit_flip

◆ cost

float* Darknet::Network::cost

◆ cuda_graph

void* Darknet::Network::cuda_graph

◆ cuda_graph_exec

void* Darknet::Network::cuda_graph_exec

◆ cuda_graph_ready

int* Darknet::Network::cuda_graph_ready

◆ cudnn_half

int Darknet::Network::cudnn_half

◆ cur_iteration

int* Darknet::Network::cur_iteration

◆ current_subdivision

int Darknet::Network::current_subdivision

◆ decay

float Darknet::Network::decay

◆ delta

float* Darknet::Network::delta

◆ delta_gpu

float* Darknet::Network::delta_gpu

◆ delta_rolling_avg

float* Darknet::Network::delta_rolling_avg

◆ delta_rolling_max

float* Darknet::Network::delta_rolling_max

◆ delta_rolling_std

float* Darknet::Network::delta_rolling_std

◆ details

Darknet::NetworkDetails* Darknet::Network::details

◆ dynamic_minibatch

int Darknet::Network::dynamic_minibatch

◆ ema_alpha

float Darknet::Network::ema_alpha

◆ eps

float Darknet::Network::eps

◆ equidistant_point

int Darknet::Network::equidistant_point

◆ exposure

float Darknet::Network::exposure

◆ flip

int Darknet::Network::flip

horizontal flip 50% probability augmentaiont for classifier training (default = 1)

◆ gamma

float Darknet::Network::gamma

◆ gaussian_noise

int Darknet::Network::gaussian_noise

◆ global_delta_gpu

float* Darknet::Network::global_delta_gpu

◆ gpu_index

int Darknet::Network::gpu_index

◆ h

int Darknet::Network::h

The height of the network. Must be divisible by 32. E.g, 480.

◆ hierarchy

Darknet::Tree* Darknet::Network::hierarchy

◆ hue

float Darknet::Network::hue

◆ index

int Darknet::Network::index

◆ init_sequential_subdivisions

int Darknet::Network::init_sequential_subdivisions

◆ input

float* Darknet::Network::input

◆ input16_gpu

float** Darknet::Network::input16_gpu

◆ input_gpu

float** Darknet::Network::input_gpu

◆ input_pinned_cpu

float* Darknet::Network::input_pinned_cpu

memory allocated using cudaHostAlloc() which is used to transfer between the GPU and CPU

◆ input_pinned_cpu_flag

int Darknet::Network::input_pinned_cpu_flag

◆ input_state_gpu

float* Darknet::Network::input_state_gpu

◆ inputs

int Darknet::Network::inputs

◆ label_smooth_eps

float Darknet::Network::label_smooth_eps

◆ layers

Darknet::Layer* Darknet::Network::layers

Each section in the .cfg file is converted into a layer.

See also
n

◆ learning_rate

float Darknet::Network::learning_rate

◆ learning_rate_max

float Darknet::Network::learning_rate_max

◆ learning_rate_min

float Darknet::Network::learning_rate_min

◆ letter_box

int Darknet::Network::letter_box

◆ loss_scale

float Darknet::Network::loss_scale

◆ max_batches

int Darknet::Network::max_batches

◆ max_chart_loss

float Darknet::Network::max_chart_loss

◆ max_delta_gpu_size

size_t Darknet::Network::max_delta_gpu_size

◆ max_input16_size

size_t* Darknet::Network::max_input16_size

◆ max_output16_size

size_t* Darknet::Network::max_output16_size

◆ mixup

int Darknet::Network::mixup

◆ momentum

float Darknet::Network::momentum

◆ mosaic_bound

int Darknet::Network::mosaic_bound

◆ n

int Darknet::Network::n

The number of layers in the network.

See also
layers

◆ num_boxes

int Darknet::Network::num_boxes

◆ num_sigmas_reject_badlabels

float Darknet::Network::num_sigmas_reject_badlabels

◆ num_steps

int Darknet::Network::num_steps

◆ optimized_memory

int Darknet::Network::optimized_memory

◆ output

float* Darknet::Network::output

◆ output16_gpu

float** Darknet::Network::output16_gpu

◆ output_gpu

float* Darknet::Network::output_gpu

◆ outputs

int Darknet::Network::outputs

◆ policy

learning_rate_policy Darknet::Network::policy

◆ power

float Darknet::Network::power

◆ resize_step

int Darknet::Network::resize_step

◆ rewritten_bbox

int* Darknet::Network::rewritten_bbox

◆ saturation

float Darknet::Network::saturation

◆ scale

float Darknet::Network::scale

◆ scales

float* Darknet::Network::scales

◆ seen

uint64_t* Darknet::Network::seen

◆ seq_scales

float* Darknet::Network::seq_scales

◆ sequential_subdivisions

int Darknet::Network::sequential_subdivisions

◆ state_delta_gpu

float* Darknet::Network::state_delta_gpu

◆ step

int Darknet::Network::step

◆ steps

int* Darknet::Network::steps

◆ subdivisions

int Darknet::Network::subdivisions

◆ t

int* Darknet::Network::t

◆ time_steps

int Darknet::Network::time_steps

◆ total_bbox

int* Darknet::Network::total_bbox

◆ track

int Darknet::Network::track

◆ train

int Darknet::Network::train

◆ train_images_num

int Darknet::Network::train_images_num

◆ truth

float* Darknet::Network::truth

◆ truth_gpu

float** Darknet::Network::truth_gpu

◆ truths

int Darknet::Network::truths

◆ try_fix_nan

int Darknet::Network::try_fix_nan

◆ use_cuda_graph

int Darknet::Network::use_cuda_graph

◆ w

int Darknet::Network::w

The width of the network. Must be divisible by 32. E.g., 640.

◆ wait_stream

int Darknet::Network::wait_stream

◆ weights_reject_freq

int Darknet::Network::weights_reject_freq

◆ workspace

float* Darknet::Network::workspace

◆ workspace_size_limit

size_t Darknet::Network::workspace_size_limit

The documentation for this struct was generated from the following file: