Darknet/YOLO v4.0-11-gbfab9ec
Object Detection Framework
 
Loading...
Searching...
No Matches
yolo_layer.cpp File Reference
Include dependency graph for yolo_layer.cpp:

Functions

void backward_yolo_layer (Darknet::Layer &l, Darknet::NetworkState state)
 
void correct_yolo_boxes (Darknet::Detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter)
 
void forward_yolo_layer (Darknet::Layer &l, Darknet::NetworkState state)
 
int get_yolo_detections (const Darknet::Layer &l, int w, int h, int netw, int neth, float thresh, int *map, int relative, Darknet::Detection *dets, int letter)
 
int get_yolo_detections_batch (const Darknet::Layer &l, int w, int h, int netw, int neth, float thresh, int *map, int relative, Darknet::Detection *dets, int letter, int batch)
 
int get_yolo_detections_v3 (Darknet::Network *net, int w, int h, int netw, int neth, float thresh, int *map, int relative, Darknet::Detection *dets, int letter, Darknet::Output_Object_Cache &cache)
 Convert everything we've detected into bounding boxes and confidence scores for each class.
 
Darknet::Layer make_yolo_layer (int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes)
 
void process_batch (void *ptr)
 
void resize_yolo_layer (Darknet::Layer *l, int w, int h)
 
int yolo_num_detections (const Darknet::Layer &l, float thresh)
 
int yolo_num_detections_batch (const Darknet::Layer &l, float thresh, int batch)
 
int yolo_num_detections_v3 (Darknet::Network *net, const int index, const float thresh, Darknet::Output_Object_Cache &cache)
 Count the number of objects found in the current image.
 

Function Documentation

◆ backward_yolo_layer()

void backward_yolo_layer ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ correct_yolo_boxes()

void correct_yolo_boxes ( Darknet::Detection dets,
int  n,
int  w,
int  h,
int  netw,
int  neth,
int  relative,
int  letter 
)
Here is the caller graph for this function:

◆ forward_yolo_layer()

void forward_yolo_layer ( Darknet::Layer l,
Darknet::NetworkState  state 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ get_yolo_detections()

int get_yolo_detections ( const Darknet::Layer l,
int  w,
int  h,
int  netw,
int  neth,
float  thresh,
int *  map,
int  relative,
Darknet::Detection dets,
int  letter 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ get_yolo_detections_batch()

int get_yolo_detections_batch ( const Darknet::Layer l,
int  w,
int  h,
int  netw,
int  neth,
float  thresh,
int *  map,
int  relative,
Darknet::Detection dets,
int  letter,
int  batch 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ get_yolo_detections_v3()

int get_yolo_detections_v3 ( Darknet::Network net,
int  w,
int  h,
int  netw,
int  neth,
float  thresh,
int *  map,
int  relative,
Darknet::Detection dets,
int  letter,
Darknet::Output_Object_Cache cache 
)

Convert everything we've detected into bounding boxes and confidence scores for each class.

Todo:
V3 what is this and where does it get used?
Here is the call graph for this function:
Here is the caller graph for this function:

◆ make_yolo_layer()

Darknet::Layer make_yolo_layer ( int  batch,
int  w,
int  h,
int  n,
int  total,
int *  mask,
int  classes,
int  max_boxes 
)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ process_batch()

void process_batch ( void *  ptr)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ resize_yolo_layer()

void resize_yolo_layer ( Darknet::Layer l,
int  w,
int  h 
)
Here is the caller graph for this function:

◆ yolo_num_detections()

int yolo_num_detections ( const Darknet::Layer l,
float  thresh 
)
Todo:
V3 JAZZ 2024-06-02: Why does "omp parallel" not work like I expect?
Here is the caller graph for this function:

◆ yolo_num_detections_batch()

int yolo_num_detections_batch ( const Darknet::Layer l,
float  thresh,
int  batch 
)
Here is the caller graph for this function:

◆ yolo_num_detections_v3()

int yolo_num_detections_v3 ( Darknet::Network net,
const int  index,
const float  thresh,
Darknet::Output_Object_Cache cache 
)

Count the number of objects found in the current image.

Only looks at the YOLO layer at index within the network. Starting with V3 JAZZ, this will also populate (appends, does not clear!) the object cache with the location of all objects found so we don't have to look through the entire YOLO output again when creating the boxes.

Here is the caller graph for this function: